Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

HospiMedica

Deascargar La Aplicación Móvil
Noticias Recientes COVID-19 Cuidados Criticos Téc. Quirúrgica Cuidados de Pacientes TI Pruebas POC Negocios Focus

Investigadores utilizan algoritmos de procesamiento de lenguaje natural (PLN) para predecir las mutaciones del virus SARS-CoV-2

Por el equipo editorial de HospiMedica en español
Actualizado el 19 Jan 2021
Print article
Imagen: Los investigadores utilizan algoritmos de PLN para predecir las mutaciones del virus SARS-CoV-2 (Fotografía cortesía de Baidu)
Imagen: Los investigadores utilizan algoritmos de PLN para predecir las mutaciones del virus SARS-CoV-2 (Fotografía cortesía de Baidu)
Los algoritmos de procesamiento de lenguaje natural (PLN) ahora pueden generar secuencias de proteínas y predecir mutaciones de virus, incluidos cambios clave que ayudan al virus SARS-CoV-2 a evadir el sistema inmunológico.

La idea clave que hace que esto sea posible es que muchas propiedades de los sistemas biológicos se pueden interpretar en términos de palabras y oraciones. En los últimos años, un puñado de investigadores ha demostrado que las secuencias de proteínas y los códigos genéticos pueden modelarse utilizando técnicas de PLN. Ahora, los biólogos computacionales del Instituto Tecnológico de Massachusetts (MIT; Cambridge, MA, EUA) reunieron varias de estas cadenas y utilizan la PLN para predecir mutaciones que permiten que los virus eviten ser detectados por anticuerpos en el sistema inmunológico humano, un proceso conocido como escape inmunológico viral. La idea básica es que la interpretación de un virus por un sistema inmunológico es análoga a la interpretación de una oración por un humano.

El equipo utiliza dos conceptos lingüísticos diferentes: gramática y semántica (o significado). La aptitud genética o evolutiva de un virus, características tales como lo bueno que es para infectar a un huésped, se puede interpretar en términos de corrección gramatical. Un virus infeccioso exitoso es gramaticalmente correcto; uno que no tiene éxito no lo es. Del mismo modo, las mutaciones de un virus se pueden interpretar en términos de semántica. Las mutaciones que hacen que un virus parezca diferente a las cosas en su entorno, como cambios en las proteínas de su superficie que lo hacen invisible para ciertos anticuerpos, han alterado su significado. Los virus con diferentes mutaciones pueden tener diferentes significados, y un virus con un significado diferente puede necesitar diferentes anticuerpos para leerlo.

Para modelar estas propiedades, los investigadores utilizaron una LSTM, un tipo de red neuronal que es anterior a las basadas en transformadores utilizadas por modelos de lenguaje grandes como GPT-3. Estas redes más antiguas se pueden entrenar con muchos menos datos que los transformadores y aún funcionan bien para muchas aplicaciones. En lugar de millones de frases, entrenaron el modelo de PLN en miles de secuencias genéticas tomadas de tres virus diferentes: 45.000 secuencias únicas para una cepa de influenza, 60.000 para una cepa de VIH y entre 3.000 y 4.000 para una cepa del virus SARS-CoV-2.

Los modelos de PLN funcionan codificando palabras en un espacio matemático de tal manera que las palabras con significados similares están más juntas que las palabras con significados diferentes. Esto se conoce como incrustación. En el caso de los virus, la incrustación de las secuencias genéticas agrupaba los virus según la similitud de sus mutaciones. El objetivo general del método es identificar mutaciones que podrían permitir que un virus escape de un sistema inmunológico sin hacerlo menos infeccioso, es decir, mutaciones que cambian el significado de un virus sin hacerlo gramaticalmente incorrecto.

Para probar su método, el equipo utilizó una métrica común para evaluar las predicciones realizadas por modelos de aprendizaje automático que puntúan la exactitud en una escala entre 0,5 (nada mejor que la casualidad) y 1 (perfecto). En este caso, tomaron las principales mutaciones identificadas por la herramienta y, utilizando virus reales en un laboratorio, comprobaron cuántas de ellas eran mutaciones de escape reales. Sus resultados variaron de 0,69 para el VIH a 0,85 para una cepa de coronavirus. Esto es mejor que los resultados de otros modelos de última generación, según los investigadores.

El equipo ha procesado modelos con nuevas variantes del coronavirus, incluida la llamada mutación del Reino Unido, la mutación del visón de Dinamarca y variantes tomadas de Sudáfrica, Singapur y Malasia. El uso de PLN acelera un proceso lento. Anteriormente, el genoma del virus tomado de un paciente con COVID-19 en el hospital podía secuenciarse y sus mutaciones recreadas y estudiadas en un laboratorio. Sin embargo, eso se puede demorar semanas, mientras que el modelo PLN predice mutaciones potenciales de inmediato, lo que enfoca el trabajo de laboratorio y lo acelera.

“Hemos aprendido el lenguaje de la evolución”, dijo Bonnie Berger, bióloga computacional del Instituto Tecnológico de Massachusetts. “La biología tiene su propio lenguaje”.

Enlace relacionado:
Instituto Tecnológico de Massachusetts (MIT)

Miembro Oro
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Miembro Oro
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Miembro Plata
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Anesthesia Cart
UMGSA-33369-VIL

Print article

Canales

Cuidados Criticos

ver canal
Imagen: Ha habido un cambio de paradigma en cómo se diagnostican y tratan las valvulopatías cardíacas (Fotografía cortesía de 123RF)

Nueva tecnología podría revolucionar atención de valvulopatías cardíacas

La valvulopatía, que afecta la función de cualquiera de las cuatro válvulas del corazón, impacta al 2,5 % de la población estadounidense y al 13 % de las personas de... Más

Técnicas Quirúrgicas

ver canal
Imagen: El sistema Maestro impulsado por NVIDIA Holoscan allana el camino para la laparoscopia de próxima generación (Fotografía cortesía de Moon Surgical)

Sistema de cirugía robótica con capacidad basada en visión por computadora allana el camino para laparoscopia de próxima generación

La laparoscopia es una técnica quirúrgica en la que los cirujanos operan a través de pequeñas incisiones con una cámara interna e instrumentos. Ahora, una novedosa t... Más

Cuidados de Pacientes

ver canal
Imagen: La solución recientemente lanzada puede transformar la programación del quirófano e impulsar las tasas de utilización  (Fotografía cortesía de Fujitsu)

Solución de optimización de la capacidad quirúrgica ayuda a hospitales a impulsar utilización de quirófanos

Una solución innovadora tiene la capacidad de transformar la utilización de la capacidad quirúrgica al atacar la causa raíz de las ineficiencias los bloques de tiempo quirúrgico.... Más

TI

ver canal
Imagen: El primer modelo específico de la institución proporciona una ventaja de desempeñoa significativa sobre los modelos actuales basados en la población (Fotografía cortesía de Mount Sinai)

Modelo de aprendizaje automático mejora predicción del riesgo de mortalidad para pacientes de cirugía cardíaca

Se han implementado algoritmos de aprendizaje automático para crear modelos predictivos en varios campos médicos, y algunos han demostrado mejores resultados en comparación con sus... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más