Análisis mediante IA predice la trayectoria diaria de los pacientes con COVID-19 en las unidades de cuidado intensivo
Por el equipo editorial de HospiMedica en español Actualizado el 13 May 2021 |

Ilustración
Los investigadores han utilizado inteligencia artificial (IA) para identificar qué parámetros clínicos cambiantes diarios predicen mejor las respuestas de intervención en pacientes con COVID-19 críticamente enfermos.
Los investigadores del Colegio Imperial de Londres (Londres, Reino Unido) utilizaron el aprendizaje automático para predecir qué pacientes podrían empeorar y no responder positivamente a la posición prona en las unidades de cuidados intensivos (UCI), una técnica que se usa comúnmente para mejorar la oxigenación de los pulmones. La posición de decúbito prono se utiliza en las UCI para ayudar a mejorar la oxigenación de la sangre en personas con síndrome de dificultad respiratoria aguda grave y se ha utilizado ampliamente durante la pandemia. Sin embargo, el estudio encontró que la pronación no ayudó a todos los pacientes con COVID-19 y, cuando se usa en pacientes que no se beneficiarán, puede retrasar el inicio de otros tratamientos secuenciales como el uso de oxigenación por membrana extracorpórea (ECMO), una máquina de soporte vital que asume la función del corazón y los pulmones para oxigenar la sangre y bombearla por todo el cuerpo.
Este fue el primer estudio que examina los datos diarios de los pacientes con COVID-19, utilizando IA para comprender la respuesta clínica a las necesidades rápidamente cambiantes de los pacientes en las UCI. Los investigadores analizaron datos de 633 pacientes con COVID-19 ventilados mecánicamente en 20 UCI del Reino Unido durante la primera ola del brote de COVID-19 (del 1 de marzo al 31 de agosto de 2020). Examinaron la importancia de los factores asociados con la progresión de la enfermedad, como los coágulos de sangre y la inflamación en los pulmones, así como los tratamientos administrados y si el paciente finalmente murió o fue dado de alta. Utilizaron estos datos, que fueron recopilados diariamente por legiones de estudiantes de medicina, enfermeras, médicos, personal de auditoría, investigación y datos, para diseñar y entrenar la herramienta de inteligencia artificial que luego hizo predicciones sobre factores que determinan los resultados.
Los nuevos hallazgos mostraron que el modelo de IA identificó factores que determinaron qué pacientes tenían probabilidades de empeorar y no responder a intervenciones como la posición prona. Los investigadores encontraron que, durante la primera ola de la pandemia, los pacientes con coágulos de sangre o inflamación en los pulmones, niveles más bajos de oxígeno, presión arterial más baja y niveles más bajos de lactato tenían menos probabilidades de beneficiarse de la pronación. En general, la pronación mejoró la oxigenación en solo el 44% de los pacientes.
Si bien el modelo de IA se utilizó en una cohorte retrospectiva de datos de pacientes recopilados durante la primera ola de la pandemia, el estudio demuestra la capacidad de los métodos de IA para predecir los resultados de los pacientes utilizando información clínica de rutina utilizada por los médicos de la UCI. Los investigadores dicen que el enfoque, en el que los datos de cada paciente se analizaron día a día en lugar de solo al ingreso, podría usarse para mejorar las pautas en la práctica clínica en el futuro. Se podría aplicar a posibles oleadas futuras de la pandemia y otras enfermedades tratadas en entornos clínicos similares.
Los investigadores continúan recopilando datos de pacientes y actualmente analizan los hallazgos de la segunda ola de la pandemia. Señalan que en la primera ola había tratamientos farmacológicos limitados disponibles, por lo que es posible que más pacientes con COVID-19 hayan sido asignados directamente a la UCI para recibir apoyo respiratorio. Sin embargo, en la segunda ola, estaban más disponibles los tratamientos probados como los esteroides y el tocilizumab, por lo que los que progresaron a la UCI tenían un perfil de enfermedad diferente, ya que eran pacientes inherentemente resistentes a estos tratamientos farmacológicos iniciales.
“El análisis avanzado para permitir el seguimiento de la enfermedad permite optimizar la atención de los pacientes para que no se pierda la oportunidad de cualquier intervención”, dijo el primer autor y director científico clínico, el Dr. Brijesh Patel, del Departamento de Cirugía y Cáncer del Imperial e intensivista senior en el Hospital Real Brompton. “Los datos de esta evaluación nacional nos permitieron no solo examinar cómo nuestras decisiones de manejo afectaron el curso de la enfermedad, sino también, de manera importante, dónde podríamos mejorar”.
“Nuestra herramienta de aprendizaje automático podría ayudar a rastrear el progreso de los pacientes en tiempo real y ayudar a informar las pautas de la UCI al llenar los vacíos en la atención al paciente, reflejándose en los médicos para identificar las mejores prácticas rápidamente y beneficiarse del intercambio”, dijo el autor principal y líder de ciencia de datos, el profesor Aldo Faisal, director del Centro UKRI de Imperial para la formación de doctorado en inteligencia artificial para el cuidado de la salud en los departamentos de informática y bioingeniería. “Más de un año después, todavía aprendemos cómo el curso de COVID-19 afecta al cuerpo y cómo esto puede cambiar día a día. La ciencia de datos y la alimentación diaria de datos de las UCI de todo el país nos ayudan a aprender mucho más rápido cuál es la mejor manera de tratar a los pacientes individuales en función de sus síntomas y necesidades diarias”.
Enlace relacionado:
Colegio Imperial de Londres
Los investigadores del Colegio Imperial de Londres (Londres, Reino Unido) utilizaron el aprendizaje automático para predecir qué pacientes podrían empeorar y no responder positivamente a la posición prona en las unidades de cuidados intensivos (UCI), una técnica que se usa comúnmente para mejorar la oxigenación de los pulmones. La posición de decúbito prono se utiliza en las UCI para ayudar a mejorar la oxigenación de la sangre en personas con síndrome de dificultad respiratoria aguda grave y se ha utilizado ampliamente durante la pandemia. Sin embargo, el estudio encontró que la pronación no ayudó a todos los pacientes con COVID-19 y, cuando se usa en pacientes que no se beneficiarán, puede retrasar el inicio de otros tratamientos secuenciales como el uso de oxigenación por membrana extracorpórea (ECMO), una máquina de soporte vital que asume la función del corazón y los pulmones para oxigenar la sangre y bombearla por todo el cuerpo.
Este fue el primer estudio que examina los datos diarios de los pacientes con COVID-19, utilizando IA para comprender la respuesta clínica a las necesidades rápidamente cambiantes de los pacientes en las UCI. Los investigadores analizaron datos de 633 pacientes con COVID-19 ventilados mecánicamente en 20 UCI del Reino Unido durante la primera ola del brote de COVID-19 (del 1 de marzo al 31 de agosto de 2020). Examinaron la importancia de los factores asociados con la progresión de la enfermedad, como los coágulos de sangre y la inflamación en los pulmones, así como los tratamientos administrados y si el paciente finalmente murió o fue dado de alta. Utilizaron estos datos, que fueron recopilados diariamente por legiones de estudiantes de medicina, enfermeras, médicos, personal de auditoría, investigación y datos, para diseñar y entrenar la herramienta de inteligencia artificial que luego hizo predicciones sobre factores que determinan los resultados.
Los nuevos hallazgos mostraron que el modelo de IA identificó factores que determinaron qué pacientes tenían probabilidades de empeorar y no responder a intervenciones como la posición prona. Los investigadores encontraron que, durante la primera ola de la pandemia, los pacientes con coágulos de sangre o inflamación en los pulmones, niveles más bajos de oxígeno, presión arterial más baja y niveles más bajos de lactato tenían menos probabilidades de beneficiarse de la pronación. En general, la pronación mejoró la oxigenación en solo el 44% de los pacientes.
Si bien el modelo de IA se utilizó en una cohorte retrospectiva de datos de pacientes recopilados durante la primera ola de la pandemia, el estudio demuestra la capacidad de los métodos de IA para predecir los resultados de los pacientes utilizando información clínica de rutina utilizada por los médicos de la UCI. Los investigadores dicen que el enfoque, en el que los datos de cada paciente se analizaron día a día en lugar de solo al ingreso, podría usarse para mejorar las pautas en la práctica clínica en el futuro. Se podría aplicar a posibles oleadas futuras de la pandemia y otras enfermedades tratadas en entornos clínicos similares.
Los investigadores continúan recopilando datos de pacientes y actualmente analizan los hallazgos de la segunda ola de la pandemia. Señalan que en la primera ola había tratamientos farmacológicos limitados disponibles, por lo que es posible que más pacientes con COVID-19 hayan sido asignados directamente a la UCI para recibir apoyo respiratorio. Sin embargo, en la segunda ola, estaban más disponibles los tratamientos probados como los esteroides y el tocilizumab, por lo que los que progresaron a la UCI tenían un perfil de enfermedad diferente, ya que eran pacientes inherentemente resistentes a estos tratamientos farmacológicos iniciales.
“El análisis avanzado para permitir el seguimiento de la enfermedad permite optimizar la atención de los pacientes para que no se pierda la oportunidad de cualquier intervención”, dijo el primer autor y director científico clínico, el Dr. Brijesh Patel, del Departamento de Cirugía y Cáncer del Imperial e intensivista senior en el Hospital Real Brompton. “Los datos de esta evaluación nacional nos permitieron no solo examinar cómo nuestras decisiones de manejo afectaron el curso de la enfermedad, sino también, de manera importante, dónde podríamos mejorar”.
“Nuestra herramienta de aprendizaje automático podría ayudar a rastrear el progreso de los pacientes en tiempo real y ayudar a informar las pautas de la UCI al llenar los vacíos en la atención al paciente, reflejándose en los médicos para identificar las mejores prácticas rápidamente y beneficiarse del intercambio”, dijo el autor principal y líder de ciencia de datos, el profesor Aldo Faisal, director del Centro UKRI de Imperial para la formación de doctorado en inteligencia artificial para el cuidado de la salud en los departamentos de informática y bioingeniería. “Más de un año después, todavía aprendemos cómo el curso de COVID-19 afecta al cuerpo y cómo esto puede cambiar día a día. La ciencia de datos y la alimentación diaria de datos de las UCI de todo el país nos ayudan a aprender mucho más rápido cuál es la mejor manera de tratar a los pacientes individuales en función de sus síntomas y necesidades diarias”.
Enlace relacionado:
Colegio Imperial de Londres
Últimas COVID-19 noticias
- Sistema de bajo costo detecta el virus SARS-CoV-2 en el aire del hospital mediante burbujas de alta tecnología
- China aprueba la primera vacuna inhalable contra la COVID-19 del mundo
- Vacuna en parche contra la COVID-19 combate variantes del SARS-CoV-2 mejor que las agujas
- Pruebas de viscosidad sanguínea predicen riesgo de muerte en pacientes hospitalizados con COVID-19
- ‘Computadora Covid’ usa IA para detectar COVID-19 en exámenes de TC de tórax
- Técnica de resonancia magnética muestra la causa de los síntomas de COVID prolongada
- TC del tórax de los pacientes con COVID-19 podrían ayudar a diferenciar entre las variantes del SARS-CoV-2
- Resonancia magnética especializada detecta anormalidades pulmonares en pacientes no hospitalizados con COVID prolongada
- Algoritmo de IA identifica a los pacientes hospitalizados con mayor riesgo de morir por COVID-19
- Estudio evalúa el impacto de la COVID-19 sobre la gammagrafía de ventilación/perfusión
- Sensor de sudor detecta biomarcadores claves que suministran una alarma precoz de la COVID-19 y la influenza
- Modelo de IA para seguimiento de COVID-19 predice mortalidad durante los primeros 30 días del ingreso
- ECG puede señalar pacientes hospitalizados con COVID-19 con riesgo más alto de muerte
- IA predice pronóstico de COVID a un nivel casi experto con base en tomografías computarizadas
- Examen de TC muestra evidencia de daño pulmonar persistente mucho tiempo después de neumonía por COVID-19
- Plataforma órgano-en-un-chip ayuda a diseñar estrategia para tratar complicaciones severas de la COVID-19
Canales
Cuidados Criticos
ver canal
Tecnología portátil predice el riesgo cardiovascular al monitorear la recuperación del ritmo cardíaco
La respuesta del corazón a la actividad física es un indicador temprano vital de cambios en la salud, particularmente en la función cardiovascular y la mortalidad. Numerosas investigaciones... Más
Tecnología revolucionaria detecta rápidamente virus de la gripe en el aire
La gripe, causada por el virus de la influenza, representa un riesgo significativo para la salud, especialmente en espacios reducidos. Ahora, una nueva tecnología de vanguardia promete mejorar la... MásTécnicas Quirúrgicas
ver canal
Nueva clase de bioadhesivos conecta tejidos humanos a implantes médicos de larga duración
Los dispositivos médicos y los tejidos humanos difieren significativamente en su composición. Mientras que los dispositivos médicos se fabrican principalmente con materiales duros como el metal y el plástico,... Más
Nueva válvula transcatéter demuestra ser segura y eficaz para el tratamiento de insuficiencia aórtica
La insuficiencia aórtica es una afección en la que la válvula aórtica no cierra correctamente, lo que permite que la sangre fluya de regreso al ventrículo izquierdo.... MásCuidados de Pacientes
ver canal
Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital
En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más
Tecnología portátil de luz germicida, única en su tipo, desinfecta superficies clínicas de alto contacto en segundos
La reducción de las infecciones adquiridas en la atención sanitaria (IAAS) sigue siendo una cuestión apremiante dentro de los sistemas sanitarios mundiales. Sólo en Estados Unidos, 1,7 millones de pacientes... Más
Solución de optimización de la capacidad quirúrgica ayuda a hospitales a impulsar utilización de quirófanos
Una solución innovadora tiene la capacidad de transformar la utilización de la capacidad quirúrgica al atacar la causa raíz de las ineficiencias los bloques de tiempo quirúrgico.... Más
Innovación revolucionaria en esterilización de instrumentos quirúrgicos mejora significativamente rendimiento del quirófano
Una innovación revolucionaria permite a los hospitales mejorar significativamente el tiempo de procesamiento de instrumentos y el rendimiento en quirófanos y departamentos de procesamiento... MásTI
ver canal
Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles
Es probable que el futuro de la medicina se centre en la personalización de la atención médica, comprendiendo exactamente lo que cada individuo necesita y proporcionando la combinación... Más
Los relojes inteligentes podrían detectar la insuficiencia cardíaca congestiva
El diagnóstico de la insuficiencia cardíaca congestiva (ICC) suele requerir técnicas de diagnóstico por imagen costosas y que consumen mucho tiempo, como la ecocardiografía,... MásPruebas POC
ver canal
Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso
Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Sistema de hemostasia de sangre total POC de última generación reconoce necesidades específicas de servicios de emergencia y quirófanos
Las pruebas hemostáticas actuales proporcionan solo un subconjunto de la información necesaria, o tardan demasiado en ser útiles en situaciones críticas de hemorragia, lo que... Más
Laboratorio portátil permitirá identificación de infecciones bacterianas más rápida y económica en el punto de necesidad
La resistencia a los antimicrobianos (RAM) es la falta de respuesta de las bacterias a un determinado antibiótico debido a mutaciones o genes de resistencia que la especie ha adquirido.... MásNegocios
ver canal
Colaboración ampliada transformará la tecnología en quirófanos mediante IA y automatización
La expansión de una colaboración existente entre tres empresas líderes tiene como objetivo desarrollar soluciones impulsadas por inteligencia artificial (IA) para quirófanos... Más