Modelo de aprendizaje automático que puede predecir la forma como interactuarán los genes y las medicinas identifica tratamientos prometedores para la COVID-19
Por el equipo editorial de HospiMedica en español Actualizado el 05 Feb 2021 |

Imagen: El modelo informático puede predecir cómo interactuarán los genes humanos y los medicamentos (Fotografía cortesía de Getty Images)
Un modelo nuevo de aprendizaje profundo que puede predecir cómo interactuarán los genes humanos y los medicamentos ha identificado al menos 10 compuestos que pueden ser prometedores como tratamientos para la COVID-19.
El modelo informático, que los investigadores denominan “DeepCE”, pronunciado como “Dip Si”, fue creado por científicos informáticos de la Universidad Estatal de Ohio (Columbus, OH, EUA) y ayuda a encontrar fármacos candidatos para nuevas enfermedades. Todos menos dos de los medicamentos identificados como posibles tratamientos para la COVID-19 por el modelo de aprendizaje profundo todavía se consideran en investigación y su efectividad contra la hepatitis C, enfermedades fúngicas, cáncer y enfermedades cardíacas está en ensayo. La lista también incluye los medicamentos aprobados ciclosporina, un inmunosupresor que previene el rechazo de órganos trasplantados y la anidulafungina, un agente antifúngico.
Se necesita hacer mucho más trabajo antes de que se confirme que cualquiera de estos medicamentos es un tratamiento seguro y eficaz para las personas infectadas con el SARS-CoV-2. Pero al usar inteligencia artificial para llegar a estas opciones, los científicos han ahorrado a los investigadores farmacéuticos y clínicos el tiempo y el dinero que se necesitarían para buscar posibles fármacos contra la COVID-19 de forma fragmentada. Los investigadores han notado que algunos de los candidatos de reutilización que generó el modelo ya se han estudiado para su uso potencial en pacientes con COVID-19.
Para hacer predicciones sobre cómo los genes y los medicamentos interactuarán y producirán candidatos para la reutilización de medicamentos, DeepCE se basa en dos fuentes principales de datos disponibles públicamente: L1000, un depósito de datos de líneas celulares humanas financiado por los Institutos Nacionales de Salud que muestra cómo la expresión génica cambia en respuesta a medicamentos, y DrugBank, que contiene información sobre las estructuras químicas y otros detalles de aproximadamente 11.000 medicamentos aprobados y en investigación.
L1000 muestra comparaciones de líneas celulares en paralelo de la actividad de expresión génica estándar con los cambios en la expresión génica producidos por las interacciones con fármacos específicos. Las líneas celulares representan enfermedades, como el melanoma y órganos, como los riñones y los pulmones. Es un proyecto en curso, con datos que se agregan a medida que experimentos en animales o humanos complementan los perfiles de expresión génica producidos en experimentos de líneas celulares.
Los investigadores del estado de Ohio entrenaron el modelo DeepCE al ejecutar todos los datos de L1000 a través de un algoritmo contra compuestos químicos específicos y sus dosis. Para llenar los vacíos de datos, el modelo convierte las descripciones de compuestos químicos en cifras, lo que permite la consideración automática de los efectos de sus componentes separados sobre los genes. Y para los genes no representados en L1000, el equipo utilizó un enfoque de aprendizaje profundo llamado “mecanismo de atención” para aumentar la muestra “aprendida” del modelo de interacciones gen-compuesto químico, lo que mejora el desempeño del marco de trabajo.
El equipo aplicó la matriz de predicción de la expresión génica de DeepCE, centrándose en datos de líneas celulares de pulmón y vías respiratorias y todo el catálogo de compuestos de DrugBank, a la información genética proporcionada por los primeros documentos COVID-19 y datos gubernamentales adicionales. Los datos de COVID-19 demostraron cómo la expresión de genes humanos había respondido a la infección con SARS-CoV-2, creando una “firma de enfermedad”.
“Cuando nadie tiene información sobre una nueva enfermedad, este modelo muestra cómo la inteligencia artificial puede ayudar a resolver el problema de cómo pensar en un tratamiento potencial”, dijo el autor principal, Ping Zhang, profesor asistente de ciencias de la computación e ingeniería e informática biomédica en la Universidad del Estado de Ohio. “Las grandes mentes piensan igual: algunos compuestos principales identificados por la inteligencia artificial coinciden con descubrimientos posteriores de la inteligencia humana”.
Enlace relacionado:
Universidad Estatal de Ohio
El modelo informático, que los investigadores denominan “DeepCE”, pronunciado como “Dip Si”, fue creado por científicos informáticos de la Universidad Estatal de Ohio (Columbus, OH, EUA) y ayuda a encontrar fármacos candidatos para nuevas enfermedades. Todos menos dos de los medicamentos identificados como posibles tratamientos para la COVID-19 por el modelo de aprendizaje profundo todavía se consideran en investigación y su efectividad contra la hepatitis C, enfermedades fúngicas, cáncer y enfermedades cardíacas está en ensayo. La lista también incluye los medicamentos aprobados ciclosporina, un inmunosupresor que previene el rechazo de órganos trasplantados y la anidulafungina, un agente antifúngico.
Se necesita hacer mucho más trabajo antes de que se confirme que cualquiera de estos medicamentos es un tratamiento seguro y eficaz para las personas infectadas con el SARS-CoV-2. Pero al usar inteligencia artificial para llegar a estas opciones, los científicos han ahorrado a los investigadores farmacéuticos y clínicos el tiempo y el dinero que se necesitarían para buscar posibles fármacos contra la COVID-19 de forma fragmentada. Los investigadores han notado que algunos de los candidatos de reutilización que generó el modelo ya se han estudiado para su uso potencial en pacientes con COVID-19.
Para hacer predicciones sobre cómo los genes y los medicamentos interactuarán y producirán candidatos para la reutilización de medicamentos, DeepCE se basa en dos fuentes principales de datos disponibles públicamente: L1000, un depósito de datos de líneas celulares humanas financiado por los Institutos Nacionales de Salud que muestra cómo la expresión génica cambia en respuesta a medicamentos, y DrugBank, que contiene información sobre las estructuras químicas y otros detalles de aproximadamente 11.000 medicamentos aprobados y en investigación.
L1000 muestra comparaciones de líneas celulares en paralelo de la actividad de expresión génica estándar con los cambios en la expresión génica producidos por las interacciones con fármacos específicos. Las líneas celulares representan enfermedades, como el melanoma y órganos, como los riñones y los pulmones. Es un proyecto en curso, con datos que se agregan a medida que experimentos en animales o humanos complementan los perfiles de expresión génica producidos en experimentos de líneas celulares.
Los investigadores del estado de Ohio entrenaron el modelo DeepCE al ejecutar todos los datos de L1000 a través de un algoritmo contra compuestos químicos específicos y sus dosis. Para llenar los vacíos de datos, el modelo convierte las descripciones de compuestos químicos en cifras, lo que permite la consideración automática de los efectos de sus componentes separados sobre los genes. Y para los genes no representados en L1000, el equipo utilizó un enfoque de aprendizaje profundo llamado “mecanismo de atención” para aumentar la muestra “aprendida” del modelo de interacciones gen-compuesto químico, lo que mejora el desempeño del marco de trabajo.
El equipo aplicó la matriz de predicción de la expresión génica de DeepCE, centrándose en datos de líneas celulares de pulmón y vías respiratorias y todo el catálogo de compuestos de DrugBank, a la información genética proporcionada por los primeros documentos COVID-19 y datos gubernamentales adicionales. Los datos de COVID-19 demostraron cómo la expresión de genes humanos había respondido a la infección con SARS-CoV-2, creando una “firma de enfermedad”.
“Cuando nadie tiene información sobre una nueva enfermedad, este modelo muestra cómo la inteligencia artificial puede ayudar a resolver el problema de cómo pensar en un tratamiento potencial”, dijo el autor principal, Ping Zhang, profesor asistente de ciencias de la computación e ingeniería e informática biomédica en la Universidad del Estado de Ohio. “Las grandes mentes piensan igual: algunos compuestos principales identificados por la inteligencia artificial coinciden con descubrimientos posteriores de la inteligencia humana”.
Enlace relacionado:
Universidad Estatal de Ohio
Últimas COVID-19 noticias
- Sistema de bajo costo detecta el virus SARS-CoV-2 en el aire del hospital mediante burbujas de alta tecnología
- China aprueba la primera vacuna inhalable contra la COVID-19 del mundo
- Vacuna en parche contra la COVID-19 combate variantes del SARS-CoV-2 mejor que las agujas
- Pruebas de viscosidad sanguínea predicen riesgo de muerte en pacientes hospitalizados con COVID-19
- ‘Computadora Covid’ usa IA para detectar COVID-19 en exámenes de TC de tórax
- Técnica de resonancia magnética muestra la causa de los síntomas de COVID prolongada
- TC del tórax de los pacientes con COVID-19 podrían ayudar a diferenciar entre las variantes del SARS-CoV-2
- Resonancia magnética especializada detecta anormalidades pulmonares en pacientes no hospitalizados con COVID prolongada
- Algoritmo de IA identifica a los pacientes hospitalizados con mayor riesgo de morir por COVID-19
- Estudio evalúa el impacto de la COVID-19 sobre la gammagrafía de ventilación/perfusión
- Sensor de sudor detecta biomarcadores claves que suministran una alarma precoz de la COVID-19 y la influenza
- Modelo de IA para seguimiento de COVID-19 predice mortalidad durante los primeros 30 días del ingreso
- ECG puede señalar pacientes hospitalizados con COVID-19 con riesgo más alto de muerte
- IA predice pronóstico de COVID a un nivel casi experto con base en tomografías computarizadas
- Examen de TC muestra evidencia de daño pulmonar persistente mucho tiempo después de neumonía por COVID-19
- Plataforma órgano-en-un-chip ayuda a diseñar estrategia para tratar complicaciones severas de la COVID-19
Canales
Cuidados Criticos
ver canal
Gemelo cardíaco del corazón mejora el diagnóstico y tratamiento de arritmias cardíacas
Millones de personas en todo el mundo padecen arritmias cardíacas. Tradicionalmente, la electrocardiografía (ECG) se ha utilizado para detectar las contracciones ventriculares prematuras... Más
Sistema de puntuación impulsado por IA evalúa la insuficiencia cardíaca con fracción de eyección preservada
La insuficiencia cardíaca con fracción de eyección preservada (ICFEp) es uno de los tipos de insuficiencia cardíaca más difíciles de diagnosticar debido a la compleja... MásTécnicas Quirúrgicas
ver canal
Reparación valvular mínimamente invasiva reduce hospitalizaciones por insuficiencia tricúspide grave
La válvula tricúspide es una de las cuatro válvulas cardíacas, responsable de regular el flujo sanguíneo desde la aurícula derecha (la cavidad superior derecha... Más
Pequeñas herramientas robóticas permiten cirugías cerebrales mínimamente invasivas
En las últimas décadas, se ha producido un notable aumento en el desarrollo de herramientas robóticas diseñadas para facilitar cirugías mínimamente invasivas,... MásCuidados de Pacientes
ver canal
Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital
En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más
Tecnología portátil de luz germicida, única en su tipo, desinfecta superficies clínicas de alto contacto en segundos
La reducción de las infecciones adquiridas en la atención sanitaria (IAAS) sigue siendo una cuestión apremiante dentro de los sistemas sanitarios mundiales. Sólo en Estados Unidos, 1,7 millones de pacientes... Más
Solución de optimización de la capacidad quirúrgica ayuda a hospitales a impulsar utilización de quirófanos
Una solución innovadora tiene la capacidad de transformar la utilización de la capacidad quirúrgica al atacar la causa raíz de las ineficiencias los bloques de tiempo quirúrgico.... Más
Innovación revolucionaria en esterilización de instrumentos quirúrgicos mejora significativamente rendimiento del quirófano
Una innovación revolucionaria permite a los hospitales mejorar significativamente el tiempo de procesamiento de instrumentos y el rendimiento en quirófanos y departamentos de procesamiento... MásTI
ver canal
Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles
Es probable que el futuro de la medicina se centre en la personalización de la atención médica, comprendiendo exactamente lo que cada individuo necesita y proporcionando la combinación... Más
Los relojes inteligentes podrían detectar la insuficiencia cardíaca congestiva
El diagnóstico de la insuficiencia cardíaca congestiva (ICC) suele requerir técnicas de diagnóstico por imagen costosas y que consumen mucho tiempo, como la ecocardiografía,... MásPruebas POC
ver canal
Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso
Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Sistema de hemostasia de sangre total POC de última generación reconoce necesidades específicas de servicios de emergencia y quirófanos
Las pruebas hemostáticas actuales proporcionan solo un subconjunto de la información necesaria, o tardan demasiado en ser útiles en situaciones críticas de hemorragia, lo que... Más
Laboratorio portátil permitirá identificación de infecciones bacterianas más rápida y económica en el punto de necesidad
La resistencia a los antimicrobianos (RAM) es la falta de respuesta de las bacterias a un determinado antibiótico debido a mutaciones o genes de resistencia que la especie ha adquirido.... MásNegocios
ver canal
Colaboración ampliada transformará la tecnología en quirófanos mediante IA y automatización
La expansión de una colaboración existente entre tres empresas líderes tiene como objetivo desarrollar soluciones impulsadas por inteligencia artificial (IA) para quirófanos... Más