Investigación de IA nueva ayuda a predecir las necesidades de recursos para la COVID-19 a partir de una serie de rayos X
Por el equipo editorial de HospiMedica en español Actualizado el 19 Jan 2021 |

Ilustración
Los científicos han desarrollado modelos de aprendizaje automático (AA) que podrían ayudar a los médicos a predecir cómo se puede desarrollar la afección de un paciente con COVID-19, a fin de ayudar a los hospitales a garantizar que tengan recursos suficientes para atender a los pacientes.
Facebook AI (Menlo Park, CA, EUA), en colaboración con la Unidad de Análisis Predictivo y el Departamento de Radiología de Langone Health de NYU (Brooklyn, NY, EUA), desarrolló tres modelos de AA que pueden ayudar a los hospitales a saber si es probable que los pacientes con COVID-19 necesiten tratamiento intensificado y puedan planificar en consecuencia. El primer modelo de AA puede predecir el deterioro del paciente en función de una sola radiografía y el segundo modelo puede predecir el deterioro del paciente en función de una secuencia de rayos X, mientras que el tercer modelo puede predecir cuánto oxígeno suplementario (si lo hubiera) podrían necesitar los pacientes con base en una sola radiografía. Su modelo, que utiliza radiografías secuenciales de tórax, puede predecir con, hasta cuatro días (96 horas) de anticipación, si un paciente puede necesitar más soluciones de cuidados intensivos, generalmente superando las predicciones de expertos humanos. Estas predicciones podrían ayudar a los médicos a evitar enviar a los pacientes en riesgo a casa demasiado pronto y ayudar a los hospitales a predecir mejor la demanda de oxígeno suplementario y otros recursos limitados.
Los métodos anteriores a este problema se habían basado en la capacitación supervisada y utilizaron imágenes de un solo periodo de tiempo. Si bien se han logrado avances con los métodos de capacitación supervisados, el etiquetado de datos requiere mucho tiempo y, por lo tanto, es limitante. En cambio, los investigadores optaron por entrenar previamente su sistema de AA en dos grandes conjuntos de datos públicos de rayos X de tórax, MIMIC-CXR-JPG y CheXpert, utilizando una técnica de aprendizaje autosupervisada llamada Momentum Contrast (MoCo). Esto les permitió utilizar grandes cantidades de datos de rayos X de tórax no COVID, para entrenar una red neuronal que pudiera extraer información de las imágenes de rayos X de tórax. Luego, el equipo afinó el modelo de MoCo usando una versión extendida del conjunto de datos NYU COVID-19.
MoCo se basa en el aprendizaje no supervisado utilizando una función de pérdida de contraste, mapeando imágenes a un espacio latente en el que imágenes similares se mapean a vectores que están muy juntos e imágenes diferentes a vectores que están más separados. Estos vectores se pueden utilizar como representaciones de características, lo que permite entrenar clasificadores utilizando una pequeña cantidad de ejemplos etiquetados. Investigaciones recientes muestran que el aprendizaje autosupervisado, usando funciones de pérdida contrastiva, es efectivo en una variedad de tareas de clasificación. Después de entrenar previamente el modelo MoCo en MIMIC-CXR-JPG y CheXpert, los investigadores utilizaron el modelo previamente entrenado para construir clasificadores que pudieran predecir si es probable que se deteriore la condición de un paciente con COVID-19. El equipo utilizó el conjunto de datos de rayos X de tórax de NYU COVID para realizar un ajuste fino, ya que contenía 26.838 imágenes de rayos X tomadas de 4.914 pacientes. Este conjunto de datos más pequeño se etiquetó según si la condición del paciente empeoró dentro de las 24, 48, 72 o 96 horas posteriores al examen en cuestión.
Los investigadores construyeron dos tipos de clasificadores para predecir el deterioro de los pacientes. El primer modelo predice el deterioro de los pacientes basándose en una sola radiografía de forma similar a un estudio anterior. El segundo modelo predice el deterioro de los pacientes con base en una secuencia de rayos X, agregando las características de la imagen a través de un modelo Transformer. El uso del aprendizaje autosupervisado sin tener que depender de conjuntos de datos etiquetados es crucial, ya que pocos grupos de investigación tienen suficientes radiografías de tórax de COVID para entrenar los modelos de IA. La construcción de modelos de IA que pueden usar una secuencia de rayos X con fines de predicción es particularmente valiosa porque este método refleja cómo trabajan los radiólogos humanos, ya que el uso de una secuencia de rayos X es más exacto para las predicciones a largo plazo. Es importante destacar que este método también explica la evolución de las infecciones por COVID a lo largo del tiempo.
Basado en estudios de lectores, realizados por investigadores de Facebook IA con radiólogos en NYU Langone, sus modelos, que utilizaron secuencias de imágenes de rayos X, superaron a los expertos humanos en la predicción de necesidades de UCI y predicciones de mortalidad, y predicciones generales de eventos adversos a largo plazo (hasta 96 horas). Ser capaces de predecir si un paciente necesitará recursos de oxígeno también sería una novedad y podría ayudar a los hospitales a decidir cómo asignar los recursos en las próximas semanas y meses. Con el aumento de casos de COVID-19 en todo el mundo, los hospitales necesitan herramientas para predecir y prepararse para los aumentos repentinos mientras planifican la asignación de recursos. Estos modelos podrían ayudar en la lucha contra la COVID-19.
“Hemos podido demostrar que, con el uso de este algoritmo de IA, las radiografías seriadas de tórax pueden predecir la necesidad de escalar la atención en los pacientes con COVID-19”, dijo William Moore, MD, profesor de Radiología en NYU Langone Health. “Dado que la COVID-19 se mantiene como un problema importante de salud pública, la capacidad de predecir la necesidad de elevar la atención de un paciente, por ejemplo, la admisión en las UCI será esencial para los hospitales”.
Enlace relacionado:
Facebook AI
Langone Health de NYU
Facebook AI (Menlo Park, CA, EUA), en colaboración con la Unidad de Análisis Predictivo y el Departamento de Radiología de Langone Health de NYU (Brooklyn, NY, EUA), desarrolló tres modelos de AA que pueden ayudar a los hospitales a saber si es probable que los pacientes con COVID-19 necesiten tratamiento intensificado y puedan planificar en consecuencia. El primer modelo de AA puede predecir el deterioro del paciente en función de una sola radiografía y el segundo modelo puede predecir el deterioro del paciente en función de una secuencia de rayos X, mientras que el tercer modelo puede predecir cuánto oxígeno suplementario (si lo hubiera) podrían necesitar los pacientes con base en una sola radiografía. Su modelo, que utiliza radiografías secuenciales de tórax, puede predecir con, hasta cuatro días (96 horas) de anticipación, si un paciente puede necesitar más soluciones de cuidados intensivos, generalmente superando las predicciones de expertos humanos. Estas predicciones podrían ayudar a los médicos a evitar enviar a los pacientes en riesgo a casa demasiado pronto y ayudar a los hospitales a predecir mejor la demanda de oxígeno suplementario y otros recursos limitados.
Los métodos anteriores a este problema se habían basado en la capacitación supervisada y utilizaron imágenes de un solo periodo de tiempo. Si bien se han logrado avances con los métodos de capacitación supervisados, el etiquetado de datos requiere mucho tiempo y, por lo tanto, es limitante. En cambio, los investigadores optaron por entrenar previamente su sistema de AA en dos grandes conjuntos de datos públicos de rayos X de tórax, MIMIC-CXR-JPG y CheXpert, utilizando una técnica de aprendizaje autosupervisada llamada Momentum Contrast (MoCo). Esto les permitió utilizar grandes cantidades de datos de rayos X de tórax no COVID, para entrenar una red neuronal que pudiera extraer información de las imágenes de rayos X de tórax. Luego, el equipo afinó el modelo de MoCo usando una versión extendida del conjunto de datos NYU COVID-19.
MoCo se basa en el aprendizaje no supervisado utilizando una función de pérdida de contraste, mapeando imágenes a un espacio latente en el que imágenes similares se mapean a vectores que están muy juntos e imágenes diferentes a vectores que están más separados. Estos vectores se pueden utilizar como representaciones de características, lo que permite entrenar clasificadores utilizando una pequeña cantidad de ejemplos etiquetados. Investigaciones recientes muestran que el aprendizaje autosupervisado, usando funciones de pérdida contrastiva, es efectivo en una variedad de tareas de clasificación. Después de entrenar previamente el modelo MoCo en MIMIC-CXR-JPG y CheXpert, los investigadores utilizaron el modelo previamente entrenado para construir clasificadores que pudieran predecir si es probable que se deteriore la condición de un paciente con COVID-19. El equipo utilizó el conjunto de datos de rayos X de tórax de NYU COVID para realizar un ajuste fino, ya que contenía 26.838 imágenes de rayos X tomadas de 4.914 pacientes. Este conjunto de datos más pequeño se etiquetó según si la condición del paciente empeoró dentro de las 24, 48, 72 o 96 horas posteriores al examen en cuestión.
Los investigadores construyeron dos tipos de clasificadores para predecir el deterioro de los pacientes. El primer modelo predice el deterioro de los pacientes basándose en una sola radiografía de forma similar a un estudio anterior. El segundo modelo predice el deterioro de los pacientes con base en una secuencia de rayos X, agregando las características de la imagen a través de un modelo Transformer. El uso del aprendizaje autosupervisado sin tener que depender de conjuntos de datos etiquetados es crucial, ya que pocos grupos de investigación tienen suficientes radiografías de tórax de COVID para entrenar los modelos de IA. La construcción de modelos de IA que pueden usar una secuencia de rayos X con fines de predicción es particularmente valiosa porque este método refleja cómo trabajan los radiólogos humanos, ya que el uso de una secuencia de rayos X es más exacto para las predicciones a largo plazo. Es importante destacar que este método también explica la evolución de las infecciones por COVID a lo largo del tiempo.
Basado en estudios de lectores, realizados por investigadores de Facebook IA con radiólogos en NYU Langone, sus modelos, que utilizaron secuencias de imágenes de rayos X, superaron a los expertos humanos en la predicción de necesidades de UCI y predicciones de mortalidad, y predicciones generales de eventos adversos a largo plazo (hasta 96 horas). Ser capaces de predecir si un paciente necesitará recursos de oxígeno también sería una novedad y podría ayudar a los hospitales a decidir cómo asignar los recursos en las próximas semanas y meses. Con el aumento de casos de COVID-19 en todo el mundo, los hospitales necesitan herramientas para predecir y prepararse para los aumentos repentinos mientras planifican la asignación de recursos. Estos modelos podrían ayudar en la lucha contra la COVID-19.
“Hemos podido demostrar que, con el uso de este algoritmo de IA, las radiografías seriadas de tórax pueden predecir la necesidad de escalar la atención en los pacientes con COVID-19”, dijo William Moore, MD, profesor de Radiología en NYU Langone Health. “Dado que la COVID-19 se mantiene como un problema importante de salud pública, la capacidad de predecir la necesidad de elevar la atención de un paciente, por ejemplo, la admisión en las UCI será esencial para los hospitales”.
Enlace relacionado:
Facebook AI
Langone Health de NYU
Últimas COVID-19 noticias
- Sistema de bajo costo detecta el virus SARS-CoV-2 en el aire del hospital mediante burbujas de alta tecnología
- China aprueba la primera vacuna inhalable contra la COVID-19 del mundo
- Vacuna en parche contra la COVID-19 combate variantes del SARS-CoV-2 mejor que las agujas
- Pruebas de viscosidad sanguínea predicen riesgo de muerte en pacientes hospitalizados con COVID-19
- ‘Computadora Covid’ usa IA para detectar COVID-19 en exámenes de TC de tórax
- Técnica de resonancia magnética muestra la causa de los síntomas de COVID prolongada
- TC del tórax de los pacientes con COVID-19 podrían ayudar a diferenciar entre las variantes del SARS-CoV-2
- Resonancia magnética especializada detecta anormalidades pulmonares en pacientes no hospitalizados con COVID prolongada
- Algoritmo de IA identifica a los pacientes hospitalizados con mayor riesgo de morir por COVID-19
- Estudio evalúa el impacto de la COVID-19 sobre la gammagrafía de ventilación/perfusión
- Sensor de sudor detecta biomarcadores claves que suministran una alarma precoz de la COVID-19 y la influenza
- Modelo de IA para seguimiento de COVID-19 predice mortalidad durante los primeros 30 días del ingreso
- ECG puede señalar pacientes hospitalizados con COVID-19 con riesgo más alto de muerte
- IA predice pronóstico de COVID a un nivel casi experto con base en tomografías computarizadas
- Examen de TC muestra evidencia de daño pulmonar persistente mucho tiempo después de neumonía por COVID-19
- Plataforma órgano-en-un-chip ayuda a diseñar estrategia para tratar complicaciones severas de la COVID-19
Canales
Cuidados Criticos
ver canal
Dispositivos médicos conectados a Internet y potenciados por IA revolucionarán la atención médica
Un nuevo estudio sugiere que los dispositivos médicos conectados a Internet y potenciados por inteligencia artificial (IA) tienen el potencial de transformar la atención médica al... Más
Tecnología portátil inspirada en estrellas de mar permite un monitoreo cardíaco más inteligente
El movimiento físico puede dificultar que los dispositivos portátiles actuales registren con precisión la actividad cardíaca. Ahora, la forma de cinco brazos de la estrella... MásTécnicas Quirúrgicas
ver canal
Nueva válvula transcatéter demuestra ser segura y eficaz para el tratamiento de insuficiencia aórtica
La insuficiencia aórtica es una afección en la que la válvula aórtica no cierra correctamente, lo que permite que la sangre fluya de regreso al ventrículo izquierdo.... Más
Reparación valvular mínimamente invasiva reduce hospitalizaciones por insuficiencia tricúspide grave
La válvula tricúspide es una de las cuatro válvulas cardíacas, responsable de regular el flujo sanguíneo desde la aurícula derecha (la cavidad superior derecha... MásCuidados de Pacientes
ver canal
Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital
En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más
Tecnología portátil de luz germicida, única en su tipo, desinfecta superficies clínicas de alto contacto en segundos
La reducción de las infecciones adquiridas en la atención sanitaria (IAAS) sigue siendo una cuestión apremiante dentro de los sistemas sanitarios mundiales. Sólo en Estados Unidos, 1,7 millones de pacientes... Más
Solución de optimización de la capacidad quirúrgica ayuda a hospitales a impulsar utilización de quirófanos
Una solución innovadora tiene la capacidad de transformar la utilización de la capacidad quirúrgica al atacar la causa raíz de las ineficiencias los bloques de tiempo quirúrgico.... Más
Innovación revolucionaria en esterilización de instrumentos quirúrgicos mejora significativamente rendimiento del quirófano
Una innovación revolucionaria permite a los hospitales mejorar significativamente el tiempo de procesamiento de instrumentos y el rendimiento en quirófanos y departamentos de procesamiento... MásTI
ver canal
Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles
Es probable que el futuro de la medicina se centre en la personalización de la atención médica, comprendiendo exactamente lo que cada individuo necesita y proporcionando la combinación... Más
Los relojes inteligentes podrían detectar la insuficiencia cardíaca congestiva
El diagnóstico de la insuficiencia cardíaca congestiva (ICC) suele requerir técnicas de diagnóstico por imagen costosas y que consumen mucho tiempo, como la ecocardiografía,... MásPruebas POC
ver canal
Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso
Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Sistema de hemostasia de sangre total POC de última generación reconoce necesidades específicas de servicios de emergencia y quirófanos
Las pruebas hemostáticas actuales proporcionan solo un subconjunto de la información necesaria, o tardan demasiado en ser útiles en situaciones críticas de hemorragia, lo que... Más
Laboratorio portátil permitirá identificación de infecciones bacterianas más rápida y económica en el punto de necesidad
La resistencia a los antimicrobianos (RAM) es la falta de respuesta de las bacterias a un determinado antibiótico debido a mutaciones o genes de resistencia que la especie ha adquirido.... MásNegocios
ver canal
Colaboración ampliada transformará la tecnología en quirófanos mediante IA y automatización
La expansión de una colaboración existente entre tres empresas líderes tiene como objetivo desarrollar soluciones impulsadas por inteligencia artificial (IA) para quirófanos... Más