HospiMedica

Deascargar La Aplicación Móvil
Noticias Recientes COVID-19 Cuidados Criticos Téc. Quirúrgica Cuidados de Pacientes TI Pruebas POC Negocios Focus

Modelo de inteligencia artificial (IA) identifica a los pacientes con COVID-19 mediante pruebas de sangre y radiografías de tórax

Por el equipo editorial de HospiMedica en español
Actualizado el 27 Jul 2021
Print article
Imagen: El modelo de inteligencia artificial (IA) identifica a pacientes con COVID-19 mediante análisis de sangre y radiografías de tórax (Fotografía cortesía de Nature)
Imagen: El modelo de inteligencia artificial (IA) identifica a pacientes con COVID-19 mediante análisis de sangre y radiografías de tórax (Fotografía cortesía de Nature)
Los investigadores han desarrollado una aplicación de aprendizaje automático para la predicción de la infección por SARS-CoV-2 mediante análisis de sangre y radiografías de tórax.

El modelo de aprendizaje automático, desarrollado por investigadores de la Universidad de Hong Kong (Hong Kong), pudo lograr una alta exactitud para la predicción de la infección por SARS-CoV-2 en un estudio de validación. El uso complementario de la radiografía de tórax podría desempeñar un papel en el aumento de la sensibilidad al tiempo que se logra una especificidad moderada cuando se combina con el modelo de sangre de aprendizaje automático, lo que puede tener implicaciones potenciales en la clasificación de pacientes, particularmente cuando los recursos para las pruebas de RT-PCR son escasos.

El objetivo de este estudio fue aplicar aprendizaje automático para la tarea de detección de COVID-19 utilizando marcadores de laboratorio básicos y explorar el papel coadyuvante de las radiografías de tórax. Los investigadores inicialmente realizaron una comparación estadística de análisis de sangre en pacientes con diferentes etiologías de neumonía, incluido la COVID-19 que involucró a 5.148 pacientes en 24 hospitales de Hong Kong durante la primera y segunda oleadas de infección. Esto se hizo para establecer una comparación de laboratorio de referencia entre la COVID-19 de otras neumonías y otros diagnósticos. Luego, los investigadores entrenaron y validaron modelos de aprendizaje automático utilizando análisis de sangre básicos en comparación con las pruebas de RT-PCR de referencia para predecir el estado de la infección por COVID-19 y explorar diferentes escenarios de casos de uso con el complemento de las radiografías de tórax. Luego, los modelos se validaron con conjuntos de validación temporal en otras oleadas de infección en Hong Kong.

Para predecir la infección por SARS-CoV-2, el modelo de aprendizaje automático logró AUC y especificidad altas, pero baja sensibilidad en los tres conjuntos de validación (AUC: 89,9-95,8%; Sensibilidad: 55,5-77,8%; Especificidad: 91,5-98,3%). Cuando se utiliza junto con las interpretaciones de los radiólogos de las radiografías de tórax, la sensibilidad fue superior al 90% manteniendo una especificidad moderada. El estudio mostró que el modelo de aprendizaje automático basado en marcadores de laboratorio fácilmente disponibles podría lograr una alta exactitud en la predicción de la infección por SARS-CoV-2.

Enlace relacionado:
Universidad de Hong Kong

Miembro Oro
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Miembro Oro
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Suction Electrode System
Strässle
New
Double Door Pharmacy Refrigerator
iPR256-GX

Print article

Canales

Cuidados Criticos

ver canal
Imagen: la cápsula de gas Atmo mide los gases a medida que viajan a través del tracto gastrointestinal y transmite los datos de forma inalámbrica (foto cortesía de Atmo Biosciences)

Una cápsula inteligente ingerible detecta sustancias químicas en el intestino

Los gases intestinales se asocian con diversas afecciones, como el cáncer de colon, el síndrome del intestino irritable y la enfermedad inflamatoria intestinal, y tienen el potencial de servir... Más

Técnicas Quirúrgicas

ver canal
Imagen: las imágenes intravasculares pueden mejorar los resultados de los procedimientos complejos de colocación de stents en pacientes con enfermedad coronaria calcificada de alto riesgo (foto cortesía de Shutterstock)

Las imágenes intravasculares mejoran la seguridad en la implantación de stents

Los pacientes diagnosticados con enfermedad coronaria arterial, causada por la acumulación de placa en las arterias, se someten con frecuencia a una intervención coronaria percutánea (ICP).... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

TI

ver canal
Imagen: Un sensor de sudor portátil basado en la tecnología de nanopartículas de núcleo-capa (Foto cortesía de Caltech)

Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles

Es probable que el futuro de la medicina se centre en la personalización de la atención médica, comprendiendo exactamente lo que cada individuo necesita y proporcionando la combinación... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más