Herramienta de IA usa rayos X del tórax para identificar a los pacientes con COVID-19 con mayor probabilidad de desarrollar complicaciones potencialmente mortales con una exactitud del 80%
Por el equipo editorial de HospiMedica en español Actualizado el 14 May 2021 |

Ilustración
Capacitado para ver patrones mediante el análisis de miles de radiografías de tórax, un programa informático predijo con hasta un 80% de exactitud qué pacientes con COVID-19 desarrollarían complicaciones potencialmente mortales en cuatro días.
Desarrollado por investigadores de la Facultad de Medicina Grossman de la Universidad de Nueva York (Nueva York, NY, EUA), el programa utilizó varios cientos de gigabytes de datos obtenidos de 5.224 radiografías de tórax tomadas de 2.943 pacientes gravemente enfermos infectados con SARS-CoV-2, el virus responsable de las infecciones.
Los autores del estudio citaron la “necesidad urgente” de poder predecir rápidamente qué pacientes con COVID-19 tienen probabilidades de sufrir complicaciones letales, de modo que los recursos de tratamiento se pueden combinar mejor con los que tienen un mayor riesgo. Por razones que aún no se comprenden completamente, la salud de algunos pacientes con la enfermedad empeora repentinamente, requiere cuidados intensivos y aumenta sus posibilidades de morir. En un intento por abordar esta necesidad, el equipo de NYU Langone introdujo no solo información de rayos X en su análisis informático, sino también la edad, la raza y el sexo de los pacientes, junto con varios signos vitales y resultados de pruebas de laboratorio, incluido el peso y la temperatura corporal y los niveles de células inmunes en sangre. También se incluyó en sus modelos matemáticos, que pueden aprender de los ejemplos, la necesidad de un ventilador mecánico y si cada paciente sobrevivió (2.405) o murió (538) a causa de sus infecciones.
Luego, los investigadores probaron el valor predictivo de la herramienta de software en 770 radiografías de tórax de otros 718 pacientes admitidos por COVID-19 a través del departamento de emergencias de los hospitales NYU Langone del 3 de marzo al 28 de junio de 2020. El programa informático predijo con exactitud cuatro de cada cinco pacientes infectados que requirieron cuidados intensivos y ventilación mecánica y/o fallecieron dentro de los cuatro días posteriores al ingreso.
Una gran ventaja de los programas de inteligencia artificial como este es que su exactitud se puede rastrear, actualizar y mejorar con más datos. El equipo planea agregar más información del paciente a medida que esté disponible y también realiza la evaluación de qué resultados de pruebas clínicas adicionales se podrían usar para mejorar su modelo de prueba. Como parte de una investigación adicional, el equipo espera implementar pronto la prueba de clasificación COVID-19 de NYU Langone con los médicos de emergencia y radiólogos y trabaja con los médicos para redactar pautas clínicas para su uso.
“Los médicos y radiólogos de la sala de emergencias necesitan herramientas efectivas, como nuestro programa, para identificar rápidamente a aquellos pacientes con COVID-19 cuya condición es más probable que se deteriore rápidamente, para que los proveedores de atención médica puedan monitorearlos más de cerca e intervenir antes”, dijo la coinvestigadora líder del estudio Farah Shamout, PhD, profesora asistente de ingeniería informática en el campus de la Universidad de Nueva York en Abu Dabi.
“Creemos que nuestra prueba de clasificación de COVID-19 representa la aplicación más grande de inteligencia artificial en radiología para abordar algunas de las necesidades más urgentes de pacientes y cuidadores durante la pandemia”, agregó Yiqiu “Artie” Shen, MS, estudiante de doctorado en el Centro de Ciencia de Datos de la NYU.
Enlace relacionado:
Facultad de Medicina Grossman de la Universidad de Nueva York
Desarrollado por investigadores de la Facultad de Medicina Grossman de la Universidad de Nueva York (Nueva York, NY, EUA), el programa utilizó varios cientos de gigabytes de datos obtenidos de 5.224 radiografías de tórax tomadas de 2.943 pacientes gravemente enfermos infectados con SARS-CoV-2, el virus responsable de las infecciones.
Los autores del estudio citaron la “necesidad urgente” de poder predecir rápidamente qué pacientes con COVID-19 tienen probabilidades de sufrir complicaciones letales, de modo que los recursos de tratamiento se pueden combinar mejor con los que tienen un mayor riesgo. Por razones que aún no se comprenden completamente, la salud de algunos pacientes con la enfermedad empeora repentinamente, requiere cuidados intensivos y aumenta sus posibilidades de morir. En un intento por abordar esta necesidad, el equipo de NYU Langone introdujo no solo información de rayos X en su análisis informático, sino también la edad, la raza y el sexo de los pacientes, junto con varios signos vitales y resultados de pruebas de laboratorio, incluido el peso y la temperatura corporal y los niveles de células inmunes en sangre. También se incluyó en sus modelos matemáticos, que pueden aprender de los ejemplos, la necesidad de un ventilador mecánico y si cada paciente sobrevivió (2.405) o murió (538) a causa de sus infecciones.
Luego, los investigadores probaron el valor predictivo de la herramienta de software en 770 radiografías de tórax de otros 718 pacientes admitidos por COVID-19 a través del departamento de emergencias de los hospitales NYU Langone del 3 de marzo al 28 de junio de 2020. El programa informático predijo con exactitud cuatro de cada cinco pacientes infectados que requirieron cuidados intensivos y ventilación mecánica y/o fallecieron dentro de los cuatro días posteriores al ingreso.
Una gran ventaja de los programas de inteligencia artificial como este es que su exactitud se puede rastrear, actualizar y mejorar con más datos. El equipo planea agregar más información del paciente a medida que esté disponible y también realiza la evaluación de qué resultados de pruebas clínicas adicionales se podrían usar para mejorar su modelo de prueba. Como parte de una investigación adicional, el equipo espera implementar pronto la prueba de clasificación COVID-19 de NYU Langone con los médicos de emergencia y radiólogos y trabaja con los médicos para redactar pautas clínicas para su uso.
“Los médicos y radiólogos de la sala de emergencias necesitan herramientas efectivas, como nuestro programa, para identificar rápidamente a aquellos pacientes con COVID-19 cuya condición es más probable que se deteriore rápidamente, para que los proveedores de atención médica puedan monitorearlos más de cerca e intervenir antes”, dijo la coinvestigadora líder del estudio Farah Shamout, PhD, profesora asistente de ingeniería informática en el campus de la Universidad de Nueva York en Abu Dabi.
“Creemos que nuestra prueba de clasificación de COVID-19 representa la aplicación más grande de inteligencia artificial en radiología para abordar algunas de las necesidades más urgentes de pacientes y cuidadores durante la pandemia”, agregó Yiqiu “Artie” Shen, MS, estudiante de doctorado en el Centro de Ciencia de Datos de la NYU.
Enlace relacionado:
Facultad de Medicina Grossman de la Universidad de Nueva York
Últimas COVID-19 noticias
- Sistema de bajo costo detecta el virus SARS-CoV-2 en el aire del hospital mediante burbujas de alta tecnología
- China aprueba la primera vacuna inhalable contra la COVID-19 del mundo
- Vacuna en parche contra la COVID-19 combate variantes del SARS-CoV-2 mejor que las agujas
- Pruebas de viscosidad sanguínea predicen riesgo de muerte en pacientes hospitalizados con COVID-19
- ‘Computadora Covid’ usa IA para detectar COVID-19 en exámenes de TC de tórax
- Técnica de resonancia magnética muestra la causa de los síntomas de COVID prolongada
- TC del tórax de los pacientes con COVID-19 podrían ayudar a diferenciar entre las variantes del SARS-CoV-2
- Resonancia magnética especializada detecta anormalidades pulmonares en pacientes no hospitalizados con COVID prolongada
- Algoritmo de IA identifica a los pacientes hospitalizados con mayor riesgo de morir por COVID-19
- Estudio evalúa el impacto de la COVID-19 sobre la gammagrafía de ventilación/perfusión
- Sensor de sudor detecta biomarcadores claves que suministran una alarma precoz de la COVID-19 y la influenza
- Modelo de IA para seguimiento de COVID-19 predice mortalidad durante los primeros 30 días del ingreso
- ECG puede señalar pacientes hospitalizados con COVID-19 con riesgo más alto de muerte
- IA predice pronóstico de COVID a un nivel casi experto con base en tomografías computarizadas
- Examen de TC muestra evidencia de daño pulmonar persistente mucho tiempo después de neumonía por COVID-19
- Plataforma órgano-en-un-chip ayuda a diseñar estrategia para tratar complicaciones severas de la COVID-19
Canales
Cuidados Criticos
ver canal
Una cápsula inteligente ingerible detecta sustancias químicas en el intestino
Los gases intestinales se asocian con diversas afecciones, como el cáncer de colon, el síndrome del intestino irritable y la enfermedad inflamatoria intestinal, y tienen el potencial de servir... Más
Nuevo método administra terapias celulares en pacientes críticos con soporte pulmonar externo
Hasta ahora, ha sido prácticamente imposible administrar terapias celulares a pacientes conectados a oxigenación por membrana extracorpórea (ECMO), un sistema de soporte vital utilizado... Más
Tecnología de IA generativa detecta enfermedades cardíacas antes que los métodos convencionales
Detectar disfunciones cardíacas de forma temprana utilizando herramientas rentables y de fácil acceso, como los electrocardiogramas (ECG), y derivar eficazmente a los pacientes adecuados... Más
Dispositivo portátil de monitoreo de salud mide los gases emitidos y absorbidos por la piel
La piel desempeña un papel vital en la protección de nuestro cuerpo frente a los elementos externos. Un componente clave de esta función protectora es la barrera cutánea, compuesta por proteínas y grasas... MásTécnicas Quirúrgicas
ver canal
Las imágenes intravasculares mejoran la seguridad en la implantación de stents
Los pacientes diagnosticados con enfermedad coronaria arterial, causada por la acumulación de placa en las arterias, se someten con frecuencia a una intervención coronaria percutánea (ICP).... Más
La primera plataforma de guía quirúrgica con IA permite a los cirujanos medir el éxito en tiempo real
Los cirujanos siempre han enfrentado desafíos para medir su progreso hacia los objetivos quirúrgicos durante los procedimientos. Tradicionalmente, obtener mediciones requería salir... Más
Corazones sintéticos generados por IA ayudan en el tratamiento de la fibrilación auricular
La fibrilación auricular (FA) es un trastorno común del ritmo cardíaco, a menudo asociado con el desarrollo de fibrosis, que consiste en la formación de tejido cicatricial en... Más
Nueva clase de bioadhesivos conecta tejidos humanos a implantes médicos de larga duración
Los dispositivos médicos y los tejidos humanos difieren significativamente en su composición. Mientras que los dispositivos médicos se fabrican principalmente con materiales duros como el metal y el plástico,... MásCuidados de Pacientes
ver canal
Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital
En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más
Tecnología portátil de luz germicida, única en su tipo, desinfecta superficies clínicas de alto contacto en segundos
La reducción de las infecciones adquiridas en la atención sanitaria (IAAS) sigue siendo una cuestión apremiante dentro de los sistemas sanitarios mundiales. Sólo en Estados Unidos, 1,7 millones de pacientes... Más
Solución de optimización de la capacidad quirúrgica ayuda a hospitales a impulsar utilización de quirófanos
Una solución innovadora tiene la capacidad de transformar la utilización de la capacidad quirúrgica al atacar la causa raíz de las ineficiencias los bloques de tiempo quirúrgico.... Más
Innovación revolucionaria en esterilización de instrumentos quirúrgicos mejora significativamente rendimiento del quirófano
Una innovación revolucionaria permite a los hospitales mejorar significativamente el tiempo de procesamiento de instrumentos y el rendimiento en quirófanos y departamentos de procesamiento... MásTI
ver canal
Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles
Es probable que el futuro de la medicina se centre en la personalización de la atención médica, comprendiendo exactamente lo que cada individuo necesita y proporcionando la combinación... Más
Los relojes inteligentes podrían detectar la insuficiencia cardíaca congestiva
El diagnóstico de la insuficiencia cardíaca congestiva (ICC) suele requerir técnicas de diagnóstico por imagen costosas y que consumen mucho tiempo, como la ecocardiografía,... MásPruebas POC
ver canal
Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso
Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Sistema de hemostasia de sangre total POC de última generación reconoce necesidades específicas de servicios de emergencia y quirófanos
Las pruebas hemostáticas actuales proporcionan solo un subconjunto de la información necesaria, o tardan demasiado en ser útiles en situaciones críticas de hemorragia, lo que... Más
Laboratorio portátil permitirá identificación de infecciones bacterianas más rápida y económica en el punto de necesidad
La resistencia a los antimicrobianos (RAM) es la falta de respuesta de las bacterias a un determinado antibiótico debido a mutaciones o genes de resistencia que la especie ha adquirido.... MásNegocios
ver canal
Colaboración ampliada transformará la tecnología en quirófanos mediante IA y automatización
La expansión de una colaboración existente entre tres empresas líderes tiene como objetivo desarrollar soluciones impulsadas por inteligencia artificial (IA) para quirófanos... Más