HospiMedica

Deascargar La Aplicación Móvil
Noticias Recientes COVID-19 Cuidados Criticos Téc. Quirúrgica Cuidados de Pacientes TI Pruebas POC Negocios Focus

Una nueva plataforma de inteligencia artificial detecta la COVID-19 en radiografías de tórax, con exactitud y rapidez

Por el equipo editorial de HospiMedica en español
Actualizado el 26 Nov 2020
Print article
Imagen: Los mapas de calor generados resaltaron adecuadamente las anomalías de los campos pulmonares en las imágenes marcadas con exactitud como positivas para COVID-19 (de la A a la C) a diferencia de las imágenes que fueron marcadas con exactitud como negativas para COVID-19 (D). La intensidad de los colores que aparecen en el mapa de calor corresponde a las características de la imagen que son significativas para predecir la positividad para COVID-19 (Fotografía cortesía de la Universidad Northwestern)
Imagen: Los mapas de calor generados resaltaron adecuadamente las anomalías de los campos pulmonares en las imágenes marcadas con exactitud como positivas para COVID-19 (de la A a la C) a diferencia de las imágenes que fueron marcadas con exactitud como negativas para COVID-19 (D). La intensidad de los colores que aparecen en el mapa de calor corresponde a las características de la imagen que son significativas para predecir la positividad para COVID-19 (Fotografía cortesía de la Universidad Northwestern)
Una nueva plataforma de inteligencia artificial (IA) que detecta la COVID-19 mediante el análisis de imágenes de rayos X de los pulmones, es aproximadamente 10 veces más rápida y entre 1 y 6% más exacta que el dictamen de los radiólogos especializados.

El algoritmo de aprendizaje automático, llamado DeepCOVID-XR y desarrollado por investigadores de la Universidad Northwestern (Evanston, IL, EUA) superó a un equipo de radiólogos especializados en tórax, pues detectó la COVID-19 en radiografías aproximadamente 10 veces más rápido y con un 1 % a 6 % más de exactitud. Los investigadores creen que los médicos podrían usar este sistema de inteligencia artificial para evaluar rápidamente a los pacientes que ingresan a un hospital por razones distintas a la COVID-19. La detección más rápida y temprana de ese virus, altamente contagioso, podría proteger a los trabajadores sanitarios y a los demás pacientes, pues conduce a que el paciente positivo se aísle más pronto. Los investigadores también creen que ese algoritmo podría servir para indicar si un paciente, que no esté bajo investigación para COVID-19, debe ser aislado y hacerle pruebas.

Para desarrollar, entrenar y probar el nuevo algoritmo, los investigadores utilizaron 17.002 imágenes de rayos X de tórax, el mayor conjunto publicado de datos clínicos de rayos X de tórax de la era COVID-19, que ha sido utilizado para entrenar un sistema de inteligencia artificial. Luego, el equipo probó DeepCOVID-XR contra cinco radiólogos experimentados capacitados en cardiotórax, con 300 imágenes aleatorias de prueba. Cada radiólogo tardó entre dos horas y media y tres horas y media para examinar ese conjunto de imágenes, mientras que el sistema de inteligencia artificial tardó unos 18 minutos. La exactitud de los radiólogos osciló entre el 76% y el 81%. DeepCOVID-XR funcionó un poco mejor, con un 82% de exactitud. Los investigadores pusieron el algoritmo a disposición del público con la esperanza de que otros científicos puedan seguir entrenándolo con nuevos datos. En este momento, DeepCOVID-XR todavía se encuentra en la fase de investigación, pero podría llegar a usarse en el entorno clínico en el futuro.

“No pretendemos reemplazar las pruebas reales”, dijo Aggelos Katsaggelos de Northwestern, experto en inteligencia artificial y autor principal del estudio. “Los rayos X son rutinarios, seguros y económicos. Nuestro sistema tardaría unos segundos en evaluar a un paciente y determinar si ese paciente debería ser aislado”.

“Podría llevar horas o días recibir los resultados de una prueba de COVID-19”, dijo el Dr. Ramsey Wehbe, cardiólogo y becario postdoctoral de IA en el Instituto Cardiovascular Bluhm de Medicina de Northwestern. “La IA no confirma si alguien tiene el virus. Pero si con este algoritmo podemos asignarle un indicador a un paciente, podríamos adelantar su clasificación antes de que se reciban los resultados de la prueba”.

Enlace relacionado:
Universidad Northwestern

Miembro Oro
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Miembro Oro
Analizador de gases en sangre POC
Stat Profile Prime Plus
New
Pediatric Phlebotomy Chair
2665M2 Extra Wide Pediatric Phlebotomy Chair
New
Rapid Cleaning Verification Tool
ProExpose Protein Detection Test

Print article

Canales

Cuidados Criticos

ver canal
Imagen: la cápsula de gas Atmo mide los gases a medida que viajan a través del tracto gastrointestinal y transmite los datos de forma inalámbrica (foto cortesía de Atmo Biosciences)

Una cápsula inteligente ingerible detecta sustancias químicas en el intestino

Los gases intestinales se asocian con diversas afecciones, como el cáncer de colon, el síndrome del intestino irritable y la enfermedad inflamatoria intestinal, y tienen el potencial de servir... Más

Técnicas Quirúrgicas

ver canal
Imagen: las imágenes intravasculares pueden mejorar los resultados de los procedimientos complejos de colocación de stents en pacientes con enfermedad coronaria calcificada de alto riesgo (foto cortesía de Shutterstock)

Las imágenes intravasculares mejoran la seguridad en la implantación de stents

Los pacientes diagnosticados con enfermedad coronaria arterial, causada por la acumulación de placa en las arterias, se someten con frecuencia a una intervención coronaria percutánea (ICP).... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

TI

ver canal
Imagen: Un sensor de sudor portátil basado en la tecnología de nanopartículas de núcleo-capa (Foto cortesía de Caltech)

Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles

Es probable que el futuro de la medicina se centre en la personalización de la atención médica, comprendiendo exactamente lo que cada individuo necesita y proporcionando la combinación... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más