La IA mejora la identificación mediante rayos X de los marcapasos
Por el equipo editorial de HospiMedica en español Actualizado el 18 Apr 2019 |
Según un estudio nuevo, el software de inteligencia artificial (IA) puede ayudar a determinar la marca y el modelo de los dispositivos de ritmo cardíaco (DRC) implantados con mayor exactitud y rapidez que los métodos actuales.
El software, desarrollado en el Colegio Imperial de Londres (Imperial; Reino Unido), ayudará al personal de emergencia a eliminar los enfoques actuales para determinar el modelo de un marcapasos o desfibrilador, que implican comparar la apariencia radiográfica de un DRC con un diagrama de flujo manual. Para el estudio, los investigadores extrajeron las imágenes radiográficas de 45 modelos de DRC de cinco fabricantes. Luego desarrollaron una red neuronal convolucional (CNN) usando un conjunto de entrenamiento de 1.451 imágenes. La CNN luego se ensayó en un conjunto que contenía 225 imágenes adicionales, que consta de cinco ejemplos de cada modelo.
La capacidad de la red para identificar al fabricante de un dispositivo se comparó con la de los cardiólogos que utilizaron un diagrama de flujo. Los resultados mostraron que la CNN tenía una exactitud del 99,6% en la identificación del fabricante de un dispositivo y una exactitud del 96,4% en la identificación del grupo del modelo. Entre los cinco cardiólogos que utilizaron el diagrama de flujo, la identificación mediana de la exactitud del fabricante fue del 72%, y la identificación del grupo de modelo no fue posible. El estudio fue publicado el 27 de marzo de 2019 en la revista JACC: Clinical Electrophysiology.
“Los marcapasos y los desfibriladores han mejorado la vida de millones de pacientes. Sin embargo, en algunos casos raros, estos dispositivos pueden fallar y los pacientes se pueden deteriorar como resultado. En estas situaciones, los médicos deben identificar rápidamente el tipo de dispositivo que tiene un paciente para que puedan brindar tratamiento, como cambiar la configuración del dispositivo o reemplazar los cables”, dijo el autor principal James Howard, MD. “Desafortunadamente, los métodos existentes son lentos y desactualizados y hay una necesidad real de encontrar nuevas y mejores formas de identificar los dispositivos en situaciones de emergencia”.
La CNN utiliza una cascada de muchas capas de unidades de procesamiento no lineales para la extracción y transformación de características, y cada capa sucesiva utiliza la salida de la capa anterior como entrada para formar una representación jerárquica.
Enlace relacionado:
Colegio Imperial de Londres
El software, desarrollado en el Colegio Imperial de Londres (Imperial; Reino Unido), ayudará al personal de emergencia a eliminar los enfoques actuales para determinar el modelo de un marcapasos o desfibrilador, que implican comparar la apariencia radiográfica de un DRC con un diagrama de flujo manual. Para el estudio, los investigadores extrajeron las imágenes radiográficas de 45 modelos de DRC de cinco fabricantes. Luego desarrollaron una red neuronal convolucional (CNN) usando un conjunto de entrenamiento de 1.451 imágenes. La CNN luego se ensayó en un conjunto que contenía 225 imágenes adicionales, que consta de cinco ejemplos de cada modelo.
La capacidad de la red para identificar al fabricante de un dispositivo se comparó con la de los cardiólogos que utilizaron un diagrama de flujo. Los resultados mostraron que la CNN tenía una exactitud del 99,6% en la identificación del fabricante de un dispositivo y una exactitud del 96,4% en la identificación del grupo del modelo. Entre los cinco cardiólogos que utilizaron el diagrama de flujo, la identificación mediana de la exactitud del fabricante fue del 72%, y la identificación del grupo de modelo no fue posible. El estudio fue publicado el 27 de marzo de 2019 en la revista JACC: Clinical Electrophysiology.
“Los marcapasos y los desfibriladores han mejorado la vida de millones de pacientes. Sin embargo, en algunos casos raros, estos dispositivos pueden fallar y los pacientes se pueden deteriorar como resultado. En estas situaciones, los médicos deben identificar rápidamente el tipo de dispositivo que tiene un paciente para que puedan brindar tratamiento, como cambiar la configuración del dispositivo o reemplazar los cables”, dijo el autor principal James Howard, MD. “Desafortunadamente, los métodos existentes son lentos y desactualizados y hay una necesidad real de encontrar nuevas y mejores formas de identificar los dispositivos en situaciones de emergencia”.
La CNN utiliza una cascada de muchas capas de unidades de procesamiento no lineales para la extracción y transformación de características, y cada capa sucesiva utiliza la salida de la capa anterior como entrada para formar una representación jerárquica.
Enlace relacionado:
Colegio Imperial de Londres
Últimas TI noticias
- Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles
- Los relojes inteligentes podrían detectar la insuficiencia cardíaca congestiva
- Un parche inteligente versátil combina monitoreo de salud y administración de fármacos
- Modelo de aprendizaje automático mejora predicción del riesgo de mortalidad para pacientes de cirugía cardíaca
- Colaboración estratégica para desarrollar e integrar IA generativa en el cuidado de la salud
- Solución de quirófanos habilitada para IA ayuda a hospitales a maximizar la utilización y desbloquear la capacidad
- IA predice cáncer de páncreas tres años antes del diagnóstico a partir de registros médicos de los pacientes
- Primer sistema de autorizaciones médicas personalizadas de IA generativa totalmente autónoma reduce el retraso en la atención
- Según un estudio, registros médicos electrónicos pueden ser clave para mejorar la atención al paciente
- IA entrenada para biomarcadores vocales específicos podría predecir con precisión enfermedad de arterias coronarias
- Inteligencia artificial detecta las fracturas en los rayos X con exactitud
- Lectura capacitada por IA aumenta la exactitud de la mamografía
- Herramienta estadística predice los picos de COVID-19 en todo el mundo
Canales
Cuidados Criticos
ver canal
El marcapasos más pequeño del mundo cabe en la punta de una jeringa
Después de una cirugía cardíaca, muchos pacientes requieren marcapasos temporales, ya sea para regular la frecuencia cardíaca mientras esperan un marcapasos permanente o para... Más
Dispositivos médicos conectados a Internet y potenciados por IA revolucionarán la atención médica
Un nuevo estudio sugiere que los dispositivos médicos conectados a Internet y potenciados por inteligencia artificial (IA) tienen el potencial de transformar la atención médica al... MásTécnicas Quirúrgicas
ver canal
Nueva válvula transcatéter demuestra ser segura y eficaz para el tratamiento de insuficiencia aórtica
La insuficiencia aórtica es una afección en la que la válvula aórtica no cierra correctamente, lo que permite que la sangre fluya de regreso al ventrículo izquierdo.... Más
Reparación valvular mínimamente invasiva reduce hospitalizaciones por insuficiencia tricúspide grave
La válvula tricúspide es una de las cuatro válvulas cardíacas, responsable de regular el flujo sanguíneo desde la aurícula derecha (la cavidad superior derecha... MásCuidados de Pacientes
ver canal
Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital
En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más
Tecnología portátil de luz germicida, única en su tipo, desinfecta superficies clínicas de alto contacto en segundos
La reducción de las infecciones adquiridas en la atención sanitaria (IAAS) sigue siendo una cuestión apremiante dentro de los sistemas sanitarios mundiales. Sólo en Estados Unidos, 1,7 millones de pacientes... Más
Solución de optimización de la capacidad quirúrgica ayuda a hospitales a impulsar utilización de quirófanos
Una solución innovadora tiene la capacidad de transformar la utilización de la capacidad quirúrgica al atacar la causa raíz de las ineficiencias los bloques de tiempo quirúrgico.... Más
Innovación revolucionaria en esterilización de instrumentos quirúrgicos mejora significativamente rendimiento del quirófano
Una innovación revolucionaria permite a los hospitales mejorar significativamente el tiempo de procesamiento de instrumentos y el rendimiento en quirófanos y departamentos de procesamiento... MásTI
ver canal
Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles
Es probable que el futuro de la medicina se centre en la personalización de la atención médica, comprendiendo exactamente lo que cada individuo necesita y proporcionando la combinación... Más
Los relojes inteligentes podrían detectar la insuficiencia cardíaca congestiva
El diagnóstico de la insuficiencia cardíaca congestiva (ICC) suele requerir técnicas de diagnóstico por imagen costosas y que consumen mucho tiempo, como la ecocardiografía,... MásPruebas POC
ver canal
Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso
Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Sistema de hemostasia de sangre total POC de última generación reconoce necesidades específicas de servicios de emergencia y quirófanos
Las pruebas hemostáticas actuales proporcionan solo un subconjunto de la información necesaria, o tardan demasiado en ser útiles en situaciones críticas de hemorragia, lo que... Más
Laboratorio portátil permitirá identificación de infecciones bacterianas más rápida y económica en el punto de necesidad
La resistencia a los antimicrobianos (RAM) es la falta de respuesta de las bacterias a un determinado antibiótico debido a mutaciones o genes de resistencia que la especie ha adquirido.... MásNegocios
ver canal
Colaboración ampliada transformará la tecnología en quirófanos mediante IA y automatización
La expansión de una colaboración existente entre tres empresas líderes tiene como objetivo desarrollar soluciones impulsadas por inteligencia artificial (IA) para quirófanos... Más