Identifican interacciones genéticas mediante imagenología de células únicas
Por el equipo editorial de HospiMedica en español Actualizado el 15 Apr 2010 |
La imagenología celular suministra una gran cantidad de datos sobre la forma como las células responden a los estímulos, pero poder usar la técnica para estudiar los sistemas biológicos es un inmenso desafío. En un estudio reciente, los investigadores han desarrollado un método innovador para interpretar datos de imágenes de una sola célula, con el fin de identificar interacciones genéticas y ofrecer una visión rápida del futuro del análisis de imagenología celular de alta eficiencia.
Por años, los científicos han estado mirando a través del microscopio a células a medida que cambian de apariencia en respuesta a diferentes tratamientos, sin embargo, la recolección de datos es engorrosa, realizada principalmente cualitativamente por observación. Por otro lado, desarrollos tecnológicos recientes han conducido al desarrollo de métodos de tamización de imágenes, de alta eficiencia, que pueden producir grandes cantidades de datos de cientos de características morfológicas diferentes.
Con la capacidad de recolectar grandes cantidades de datos de imagenología, investigadores del Instituto Tecnológico de Massachusetts (MIT; Cambridge, MA, EUA) y la Escuela Médica Harvard (Boston, MA, EUA) reconocieron una oportunidad de explorar las redes celulares que regulan la morfología celular. "Estas imágenes son una fuente enorme de datos que apenas se está explorando”, dijo la investigadora en MIT, Dra. Bonnie Berger, autora principal del estudio, publicado en línea el 9 de febrero de 2010, en la revista Genome Research. "Nos dimos cuenta que teníamos suficientes datos para ir más allá de la clasificación y empezar a entender el mecanismo detrás de las diferencias en la forma”.
Para poder cumplir con el reto de interpretar los datos de las imágenes celulares, la Dra. Berger y el estudiante de postgrado, Oaz Nir desarrollaron un modelo computacional novedoso para identificar las interacciones genéticas usando datos morfológicos de alta dimensión. El modelo, que integra el conocimiento de una vía, mapea las interacciones potenciales dentro de una red, estudiando características morfológicas similares a la perturbación genética.
El grupo demostró el método analizando la red de señalización Rho en las moscas de la fruta, una red que regula la adhesión celular y la motilidad en los organismos eucarióticos. En colaboración con el Dr. Chris Bakal y el Dr. Norbert Perrimon en la Escuela Médica Harvard, "eliminaron” componentes de la red de señalización Rho usando interferencia de ARN y después tomaron imágenes de miles de moscas de fruta, recolectando mediciones del perímetro celular, el área nuclear y más de 150 características morfológicas adicionales para cada célula. Los datos fueron pasados a través de un marco computacional para generar un conjunto de interacciones de alta confianza apoyados por la confirmación de interacciones conocidas previamente.
Los investigadores descubrieron que haciendo eliminaciones combinadas de los componentes de la red Rho, su método computacional podía inferir con exactitud las interacciones de la red de señalización Rho, con más precisión que usando solamente datos de eliminaciones únicas. La Dra. Berger anotó que este hallazgo resalta la importancia de los experimentos de combinación para inferir redes complejas, necesarias para superar la redundancia natural en las vías de señalización. Como se ha involucrado la perturbación de la vía en Rho, en los humanos en el cáncer y otras enfermedades, los científicos creen que estas interacciones predichas serán candidatos excelentes para estudios futuros.
La Dra. Berger espera que en combinación con otras fuentes de datos, la imagenología como una fuente nueva de datos de alta eficiencia, debiera aumentar apreciablemente la exactitud de redes de señalización conocidas. "Este trabajo permite echar una visión rápida al futuro”, añadió la Dra. Berger, donde mirar manualmente por el microscopio a células una-a-una, se reemplaza con el procesamiento automatizado de alta eficiencia de muchas imágenes celulares”.
Enlaces relacionados:
Massachusetts Institute of Technology
Harvard Medical School
Por años, los científicos han estado mirando a través del microscopio a células a medida que cambian de apariencia en respuesta a diferentes tratamientos, sin embargo, la recolección de datos es engorrosa, realizada principalmente cualitativamente por observación. Por otro lado, desarrollos tecnológicos recientes han conducido al desarrollo de métodos de tamización de imágenes, de alta eficiencia, que pueden producir grandes cantidades de datos de cientos de características morfológicas diferentes.
Con la capacidad de recolectar grandes cantidades de datos de imagenología, investigadores del Instituto Tecnológico de Massachusetts (MIT; Cambridge, MA, EUA) y la Escuela Médica Harvard (Boston, MA, EUA) reconocieron una oportunidad de explorar las redes celulares que regulan la morfología celular. "Estas imágenes son una fuente enorme de datos que apenas se está explorando”, dijo la investigadora en MIT, Dra. Bonnie Berger, autora principal del estudio, publicado en línea el 9 de febrero de 2010, en la revista Genome Research. "Nos dimos cuenta que teníamos suficientes datos para ir más allá de la clasificación y empezar a entender el mecanismo detrás de las diferencias en la forma”.
Para poder cumplir con el reto de interpretar los datos de las imágenes celulares, la Dra. Berger y el estudiante de postgrado, Oaz Nir desarrollaron un modelo computacional novedoso para identificar las interacciones genéticas usando datos morfológicos de alta dimensión. El modelo, que integra el conocimiento de una vía, mapea las interacciones potenciales dentro de una red, estudiando características morfológicas similares a la perturbación genética.
El grupo demostró el método analizando la red de señalización Rho en las moscas de la fruta, una red que regula la adhesión celular y la motilidad en los organismos eucarióticos. En colaboración con el Dr. Chris Bakal y el Dr. Norbert Perrimon en la Escuela Médica Harvard, "eliminaron” componentes de la red de señalización Rho usando interferencia de ARN y después tomaron imágenes de miles de moscas de fruta, recolectando mediciones del perímetro celular, el área nuclear y más de 150 características morfológicas adicionales para cada célula. Los datos fueron pasados a través de un marco computacional para generar un conjunto de interacciones de alta confianza apoyados por la confirmación de interacciones conocidas previamente.
Los investigadores descubrieron que haciendo eliminaciones combinadas de los componentes de la red Rho, su método computacional podía inferir con exactitud las interacciones de la red de señalización Rho, con más precisión que usando solamente datos de eliminaciones únicas. La Dra. Berger anotó que este hallazgo resalta la importancia de los experimentos de combinación para inferir redes complejas, necesarias para superar la redundancia natural en las vías de señalización. Como se ha involucrado la perturbación de la vía en Rho, en los humanos en el cáncer y otras enfermedades, los científicos creen que estas interacciones predichas serán candidatos excelentes para estudios futuros.
La Dra. Berger espera que en combinación con otras fuentes de datos, la imagenología como una fuente nueva de datos de alta eficiencia, debiera aumentar apreciablemente la exactitud de redes de señalización conocidas. "Este trabajo permite echar una visión rápida al futuro”, añadió la Dra. Berger, donde mirar manualmente por el microscopio a células una-a-una, se reemplaza con el procesamiento automatizado de alta eficiencia de muchas imágenes celulares”.
Enlaces relacionados:
Massachusetts Institute of Technology
Harvard Medical School
Últimas Bio Investigación noticias
- Diseñan programa que proporciona soluciones integradas para investigación bioinformática
- Adquisición de Biotech busca acelerar desarrollo y comercialización de aplicaciones en inmunosecuenciación
- Compuestos naturales de planta para proteger la piel durante radioterapia
- Desarrollan vacuna para prevenir la enfermedad cardiaca
- Alimentación con canela evita avance de Parkinson en modelo murino
- Falta de enzima reguladora estimula evolución del cáncer de riñón
- Exploran bloqueo del movimiento de células para detener propagación del cáncer
- Inhibidor del colesterol bloquea crecimiento del cáncer de mama en modelo murino
- Metabolito del colesterol contribuye a la acumulación de placas ateroscleróticas
- Mutaciones en el gen de la apolipoproteína C3 bajan niveles de triglicéridos y reducen riesgo de enfermedades cardiacas
- Ausencia de gen oncoinhibidor estimula metástasis del cáncer de mama en pulmones
- Identifican enzima que estimula formas agresivas de cáncer del páncreas
- Novedoso compuesto revierte síntomas de Alzheimer en modelo murino
- Técnicas genéticas para métodos terapéuticos para enfermedades cardiovasculares
- Anticuerpo monoclonal inhibe receptor de células B y alivia la carga leucémica
- Diseñan moléculas para combatir el Alzheimer y otros trastornos neurodegenerativos
Canales
Cuidados Criticos
ver canal
Plantilla inteligente inalámbrica y autoalimentada mejora el control de la salud personal
Millones de personas enfrentan dificultades con funciones ambulatorias, como caminar, correr y subir escaleras. Aunque en los últimos años ha crecido el interés por desarrollar sistemas... Más
Novedoso sistema de cánula permite la administración dirigida de agentes de imagen y fármacos
La microscopía multifotónica se ha convertido en una herramienta invaluable en neurociencia, permitiendo a los investigadores observar la actividad cerebral en tiempo real con imágenes... MásTécnicas Quirúrgicas
ver canal
Tecnología de bypass coronario sin suturas elimina la necesidad de cirugías a corazón abierto
En pacientes con enfermedad de las arterias coronarias, ciertos vasos sanguíneos pueden estar estrechados o bloqueados, lo que requiere la colocación de un stent o la realización de... Más
Las imágenes intravasculares mejoran la seguridad en la implantación de stents
Los pacientes diagnosticados con enfermedad coronaria arterial, causada por la acumulación de placa en las arterias, se someten con frecuencia a una intervención coronaria percutánea (ICP).... MásCuidados de Pacientes
ver canal
Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital
En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más
Tecnología portátil de luz germicida, única en su tipo, desinfecta superficies clínicas de alto contacto en segundos
La reducción de las infecciones adquiridas en la atención sanitaria (IAAS) sigue siendo una cuestión apremiante dentro de los sistemas sanitarios mundiales. Sólo en Estados Unidos, 1,7 millones de pacientes... Más
Solución de optimización de la capacidad quirúrgica ayuda a hospitales a impulsar utilización de quirófanos
Una solución innovadora tiene la capacidad de transformar la utilización de la capacidad quirúrgica al atacar la causa raíz de las ineficiencias los bloques de tiempo quirúrgico.... Más
Innovación revolucionaria en esterilización de instrumentos quirúrgicos mejora significativamente rendimiento del quirófano
Una innovación revolucionaria permite a los hospitales mejorar significativamente el tiempo de procesamiento de instrumentos y el rendimiento en quirófanos y departamentos de procesamiento... MásTI
ver canal
Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles
Es probable que el futuro de la medicina se centre en la personalización de la atención médica, comprendiendo exactamente lo que cada individuo necesita y proporcionando la combinación... Más
Los relojes inteligentes podrían detectar la insuficiencia cardíaca congestiva
El diagnóstico de la insuficiencia cardíaca congestiva (ICC) suele requerir técnicas de diagnóstico por imagen costosas y que consumen mucho tiempo, como la ecocardiografía,... MásPruebas POC
ver canal
Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso
Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Sistema de hemostasia de sangre total POC de última generación reconoce necesidades específicas de servicios de emergencia y quirófanos
Las pruebas hemostáticas actuales proporcionan solo un subconjunto de la información necesaria, o tardan demasiado en ser útiles en situaciones críticas de hemorragia, lo que... Más
Laboratorio portátil permitirá identificación de infecciones bacterianas más rápida y económica en el punto de necesidad
La resistencia a los antimicrobianos (RAM) es la falta de respuesta de las bacterias a un determinado antibiótico debido a mutaciones o genes de resistencia que la especie ha adquirido.... MásNegocios
ver canal
Colaboración ampliada transformará la tecnología en quirófanos mediante IA y automatización
La expansión de una colaboración existente entre tres empresas líderes tiene como objetivo desarrollar soluciones impulsadas por inteligencia artificial (IA) para quirófanos... Más