Método de aprendizaje automático predice la duración de la cirugía
|
Por el equipo editorial de HospiMedica en español Actualizado el 05 Aug 2019 |

Imagen: Un resumen gráfico del algoritmo de IA para las salas de cirugía (Fotografía cortesía de la UW).
Un modelo estadístico nuevo basado en inteligencia artificial (IA) utiliza grandes conjuntos de datos retrospectivos para mejorar la estimación de la duración de los procedimientos quirúrgicos.
Investigadores de la Universidad de Washington (UW; Seattle, EUA) y Perimatics (Bellevue, WA, EUA) utilizaron un conjunto de datos que incluía 46.986 cirugías programadas realizadas por 92 cirujanos en la UW, entre enero 2014 y diciembre de 2017, con el fin de desarrollar, ensayar y entrenar modelos estadísticos de aprendizaje automático (AA) que podrían mejorar la eficiencia de la sala de operaciones (OR), al predecir mejor la duración de cada caso. Los modelos se desarrollaron en un conjunto de datos de entrenamiento que incluía el 80% del conjunto de datos, y se validaron en el 20% restante que se usó como un conjunto de datos de prueba.
Las predicciones derivadas del AA se compararon con los tiempos de procedimiento históricos promedio y las estimaciones del cirujano, con modelos individuales creados para cada servicio quirúrgico y cirujano, respectivamente. Los resultados mostraron que el algoritmo de AA podía predecir los tiempos de los casos dentro de un umbral del 10%. Los modelos específicos del cirujano pudieron mejorar la exactitud del 30% (según la estimación de un cirujano) al 39%, y entre el tercio superior de los cirujanos, la exactitud mejoró a más del 50%. El estudio fue publicado el 18 de julio de 2019 en la revista Journal of the American College of Surgeons (JACS).
“La programación de las salas de cirugía es un problema de cinco mil millones de dólares. Para optimizar los quirófanos, es necesario responder una pregunta fundamental: ¿cuánto dura cada cirugía? La subutilización significa que menos pacientes reciben atención quirúrgica y el hospital tiene un exceso de capacidad. La sobreutilización da como resultado operaciones canceladas y gastos por horas extras”, dijo el coautor del estudio y autor principal, Rajeev Saxena, de la facultad de medicina de la Universidad de Washington. “Puede cambiar una cultura organizacional completa adoptando un enfoque de envío de datos e involucrando a las partes clave interesadas”.
Se deben tener en cuenta muchas variables al intentar optimizar la programación quirúrgica, incluida la duración del caso, el tiempo de espera de los pacientes para la cirugía y el número de bloques de tiempo de quirófano otorgados a cada cirujano o servicio quirúrgico, según lo determinen los comités de quirófano. Un umbral de utilización del 75% es apropiado para la mayoría de los quirófanos, pero si un hospital puede fortalecer la utilización de las salas de cirugía, puede aumentar los ingresos aumentando el volumen total de casos.
Enlace relacionado:
Universidad de Washington
Perimatics
Investigadores de la Universidad de Washington (UW; Seattle, EUA) y Perimatics (Bellevue, WA, EUA) utilizaron un conjunto de datos que incluía 46.986 cirugías programadas realizadas por 92 cirujanos en la UW, entre enero 2014 y diciembre de 2017, con el fin de desarrollar, ensayar y entrenar modelos estadísticos de aprendizaje automático (AA) que podrían mejorar la eficiencia de la sala de operaciones (OR), al predecir mejor la duración de cada caso. Los modelos se desarrollaron en un conjunto de datos de entrenamiento que incluía el 80% del conjunto de datos, y se validaron en el 20% restante que se usó como un conjunto de datos de prueba.
Las predicciones derivadas del AA se compararon con los tiempos de procedimiento históricos promedio y las estimaciones del cirujano, con modelos individuales creados para cada servicio quirúrgico y cirujano, respectivamente. Los resultados mostraron que el algoritmo de AA podía predecir los tiempos de los casos dentro de un umbral del 10%. Los modelos específicos del cirujano pudieron mejorar la exactitud del 30% (según la estimación de un cirujano) al 39%, y entre el tercio superior de los cirujanos, la exactitud mejoró a más del 50%. El estudio fue publicado el 18 de julio de 2019 en la revista Journal of the American College of Surgeons (JACS).
“La programación de las salas de cirugía es un problema de cinco mil millones de dólares. Para optimizar los quirófanos, es necesario responder una pregunta fundamental: ¿cuánto dura cada cirugía? La subutilización significa que menos pacientes reciben atención quirúrgica y el hospital tiene un exceso de capacidad. La sobreutilización da como resultado operaciones canceladas y gastos por horas extras”, dijo el coautor del estudio y autor principal, Rajeev Saxena, de la facultad de medicina de la Universidad de Washington. “Puede cambiar una cultura organizacional completa adoptando un enfoque de envío de datos e involucrando a las partes clave interesadas”.
Se deben tener en cuenta muchas variables al intentar optimizar la programación quirúrgica, incluida la duración del caso, el tiempo de espera de los pacientes para la cirugía y el número de bloques de tiempo de quirófano otorgados a cada cirujano o servicio quirúrgico, según lo determinen los comités de quirófano. Un umbral de utilización del 75% es apropiado para la mayoría de los quirófanos, pero si un hospital puede fortalecer la utilización de las salas de cirugía, puede aumentar los ingresos aumentando el volumen total de casos.
Enlace relacionado:
Universidad de Washington
Perimatics
Últimas TI noticias
- Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles
- Los relojes inteligentes podrían detectar la insuficiencia cardíaca congestiva
- Un parche inteligente versátil combina monitoreo de salud y administración de fármacos
- Modelo de aprendizaje automático mejora predicción del riesgo de mortalidad para pacientes de cirugía cardíaca
- Colaboración estratégica para desarrollar e integrar IA generativa en el cuidado de la salud
- Solución de quirófanos habilitada para IA ayuda a hospitales a maximizar la utilización y desbloquear la capacidad
- IA predice cáncer de páncreas tres años antes del diagnóstico a partir de registros médicos de los pacientes
- Primer sistema de autorizaciones médicas personalizadas de IA generativa totalmente autónoma reduce el retraso en la atención
- Según un estudio, registros médicos electrónicos pueden ser clave para mejorar la atención al paciente
- IA entrenada para biomarcadores vocales específicos podría predecir con precisión enfermedad de arterias coronarias
- Inteligencia artificial detecta las fracturas en los rayos X con exactitud
Canales
Cuidados Criticos
ver canal
Microrrobots guiados magnéticamente permiten la administración dirigida de fármacos
El ictus afecta a 12 millones de personas en todo el mundo cada año, y a menudo provoca la muerte o discapacidad permanente. El tratamiento actual se basa en la administración sistémica... Más
Nanomateriales inteligentes detectan y tratan lesiones cerebrales traumáticas simultáneamente
La lesión cerebral traumática (LCT) continúa dejando a millones de personas con discapacidades a largo plazo cada año. Tras un impacto repentino por una caída, una colisión... Más
Transfusión de sangre más temprana podría reducir la insuficiencia cardíaca y arritmia después de la cirugía
La pérdida de sangre durante o después de una cirugía puede generar un estrés significativo en personas con enfermedad cardíaca, aumentando el riesgo de complicaciones peligrosas. Las transfusiones suelen... MásCuidados de Pacientes
ver canal
Dispositivo automático de lavado de vías intravenosas mejora la atención en infusiones
Más del 80% de los pacientes hospitalizados reciben terapia intravenosa (IV). Cada dosis de medicamento IV administrada en una bolsa de infusión de pequeño volumen (<250 mL) debe... Más
Herramienta de capacitación en realidad virtual combate la contaminación de equipos médicos portátiles
Las infecciones asociadas a la atención médica (IAAS) afectan a uno de cada 31 pacientes, causan casi 100.000 muertes al año y generan un costo de 28.4 mil millones de dólares... Más
Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital
En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... MásTecnología portátil de luz germicida, única en su tipo, desinfecta superficies clínicas de alto contacto en segundos
La reducción de las infecciones adquiridas en la atención sanitaria (IAAS) sigue siendo una cuestión apremiante dentro de los sistemas sanitarios mundiales. Sólo en Estados Unidos, 1,7 millones de pacientes... MásTI
ver canal
Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles
Es probable que el futuro de la medicina se centre en la personalización de la atención médica, comprendiendo exactamente lo que cada individuo necesita y proporcionando la combinación... Más
Los relojes inteligentes podrían detectar la insuficiencia cardíaca congestiva
El diagnóstico de la insuficiencia cardíaca congestiva (ICC) suele requerir técnicas de diagnóstico por imagen costosas y que consumen mucho tiempo, como la ecocardiografía,... MásPruebas POC
ver canal
Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso
Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Sistema de hemostasia de sangre total POC de última generación reconoce necesidades específicas de servicios de emergencia y quirófanos
Las pruebas hemostáticas actuales proporcionan solo un subconjunto de la información necesaria, o tardan demasiado en ser útiles en situaciones críticas de hemorragia, lo que... Más
Laboratorio portátil permitirá identificación de infecciones bacterianas más rápida y económica en el punto de necesidad
La resistencia a los antimicrobianos (RAM) es la falta de respuesta de las bacterias a un determinado antibiótico debido a mutaciones o genes de resistencia que la especie ha adquirido.... MásNegocios
ver canal
Philips y Masimo se asocian para impulsar las tecnologías de monitorización de pacientes
Royal Philips (Ámsterdam, Países Bajos) y Masimo (Irvine, CA, EUA) han renovado su colaboración estratégica plurianual, combinando la experiencia de Philips en monitorización... Más







