Malla impresa en 3D facilita la fabricación de soportes ortopédicos
Por el equipo editorial de HospiMedica en español Actualizado el 22 Aug 2019 |

Imagen: Ejemplos de mallas impresas en 3D (Fotografía cortesía de MIT).
Un estudio nuevo sugiere que la fabricación aditiva (FA) de mallas flexibles adaptadas biomecánicamente podría llevar a dispositivos portátiles e implantables personalizados.
Desarrolladas en el Instituto de Tecnología de Massachusetts (MIT, Cambridge, MA, EUA), las mallas se fabrican mediante extrusión de poliuretano termoplástico utilizando una herramienta continua de herramientas de FA para adaptar la elasticidad de las celdas de la malla mediante modificación de holgura y modulación de la unión filamento-filamento. La configuración resultante de la malla se parece a una tela resistente y flexible con una rigidez de inversión direccionalmente específica. Cuanto más amplio es el espaciado de las celdas unitarias, más se puede estirar la malla a baja tensión antes de volverse más rígida, un principio de diseño que adapta el grado de flexibilidad de la malla y lo ayuda a imitar el tejido blando.
La malla flexible también se puede endurecer imprimiendo fibras de acero inoxidable sobre las regiones de la malla elástica donde se necesitan propiedades más rígidas, y luego imprimiendo una tercera capa elástica sobre el acero para emparedar el hilo más rígido en la malla. La combinación de materiales rígidos y elásticos proporciona a la malla la capacidad de estirarse fácilmente hasta un punto, después del cual se comienza a endurecer. Las mallas también se pueden diseñar como una estructura auxética, una estructura que se vuelve más ancha cuando se tira de ella. Las estructuras auxéticas también pueden dar apoyo a superficies altamente curvas del cuerpo.
Para demostrar las capacidades de la nueva malla, los investigadores diseñaron una abrazadera para el tobillo con una rigidez de inversión direccionalmente específica que surge de la malla incrustada, que puede proporcionar un soporte más fuerte para evitar, por ejemplo, que un músculo se sobrecargue. La estructura de la malla evita que el tobillo gire hacia adentro, a la vez que permite que la articulación se mueva libremente en otras direcciones. La mecánica de tracción de la malla de la abrazadera fue diseñada para que coincida con la respuesta no lineal del músculo. Los investigadores también fabricaron un refuerzo para la rodilla que se ajusta a la rodilla cuando se dobla, y un guante con una malla impresa en 3D cosida en su superficie superior, que se ajusta a los nudillos del usuario. El estudio fue publicado el 19 de junio de 2019 en la revista Advanced Functional Materials.
“Intentamos pensar en cómo podemos hacer que las construcciones impresas en 3D sean más flexibles y cómodas, como los textiles y las telas. Una de las razones por las que los textiles son tan flexibles es que las fibras se puede mover fácilmente entre sí”, dijo el autor principal e ingeniero mecánico, Sebastián Pattinson, PhD. “Hay potencial para hacer todo tipo de dispositivos que interactúen con el cuerpo humano. Mallas quirúrgicas, ortesis, incluso dispositivos cardiovasculares como stents; se pueden imaginar todos los beneficios potenciales de los tipos de estructuras que mostramos”.
La fabricación aditiva describe tecnologías que construyen objetos en 3D utilizando software de modelado de diseño asistido por computadora (CAD), máquinas y material para formar capas. Una vez que se produce un boceto CAD, los datos son transmitidos a la impresora, que coloca o agrega capas sucesivas de líquido, polvo, material de hoja u otro, de una manera, capa por capa, para fabricar un objeto en 3D. En esta definición se incluyen muchas tecnologías, como la creación rápida de prototipos, la fabricación digital directa, la fabricación en capas y la fabricación aditiva.
Enlace relacionado:
Instituto de Tecnología de Massachusetts
Desarrolladas en el Instituto de Tecnología de Massachusetts (MIT, Cambridge, MA, EUA), las mallas se fabrican mediante extrusión de poliuretano termoplástico utilizando una herramienta continua de herramientas de FA para adaptar la elasticidad de las celdas de la malla mediante modificación de holgura y modulación de la unión filamento-filamento. La configuración resultante de la malla se parece a una tela resistente y flexible con una rigidez de inversión direccionalmente específica. Cuanto más amplio es el espaciado de las celdas unitarias, más se puede estirar la malla a baja tensión antes de volverse más rígida, un principio de diseño que adapta el grado de flexibilidad de la malla y lo ayuda a imitar el tejido blando.
La malla flexible también se puede endurecer imprimiendo fibras de acero inoxidable sobre las regiones de la malla elástica donde se necesitan propiedades más rígidas, y luego imprimiendo una tercera capa elástica sobre el acero para emparedar el hilo más rígido en la malla. La combinación de materiales rígidos y elásticos proporciona a la malla la capacidad de estirarse fácilmente hasta un punto, después del cual se comienza a endurecer. Las mallas también se pueden diseñar como una estructura auxética, una estructura que se vuelve más ancha cuando se tira de ella. Las estructuras auxéticas también pueden dar apoyo a superficies altamente curvas del cuerpo.
Para demostrar las capacidades de la nueva malla, los investigadores diseñaron una abrazadera para el tobillo con una rigidez de inversión direccionalmente específica que surge de la malla incrustada, que puede proporcionar un soporte más fuerte para evitar, por ejemplo, que un músculo se sobrecargue. La estructura de la malla evita que el tobillo gire hacia adentro, a la vez que permite que la articulación se mueva libremente en otras direcciones. La mecánica de tracción de la malla de la abrazadera fue diseñada para que coincida con la respuesta no lineal del músculo. Los investigadores también fabricaron un refuerzo para la rodilla que se ajusta a la rodilla cuando se dobla, y un guante con una malla impresa en 3D cosida en su superficie superior, que se ajusta a los nudillos del usuario. El estudio fue publicado el 19 de junio de 2019 en la revista Advanced Functional Materials.
“Intentamos pensar en cómo podemos hacer que las construcciones impresas en 3D sean más flexibles y cómodas, como los textiles y las telas. Una de las razones por las que los textiles son tan flexibles es que las fibras se puede mover fácilmente entre sí”, dijo el autor principal e ingeniero mecánico, Sebastián Pattinson, PhD. “Hay potencial para hacer todo tipo de dispositivos que interactúen con el cuerpo humano. Mallas quirúrgicas, ortesis, incluso dispositivos cardiovasculares como stents; se pueden imaginar todos los beneficios potenciales de los tipos de estructuras que mostramos”.
La fabricación aditiva describe tecnologías que construyen objetos en 3D utilizando software de modelado de diseño asistido por computadora (CAD), máquinas y material para formar capas. Una vez que se produce un boceto CAD, los datos son transmitidos a la impresora, que coloca o agrega capas sucesivas de líquido, polvo, material de hoja u otro, de una manera, capa por capa, para fabricar un objeto en 3D. En esta definición se incluyen muchas tecnologías, como la creación rápida de prototipos, la fabricación digital directa, la fabricación en capas y la fabricación aditiva.
Enlace relacionado:
Instituto de Tecnología de Massachusetts
Últimas TI noticias
- Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles
- Los relojes inteligentes podrían detectar la insuficiencia cardíaca congestiva
- Un parche inteligente versátil combina monitoreo de salud y administración de fármacos
- Modelo de aprendizaje automático mejora predicción del riesgo de mortalidad para pacientes de cirugía cardíaca
- Colaboración estratégica para desarrollar e integrar IA generativa en el cuidado de la salud
- Solución de quirófanos habilitada para IA ayuda a hospitales a maximizar la utilización y desbloquear la capacidad
- IA predice cáncer de páncreas tres años antes del diagnóstico a partir de registros médicos de los pacientes
- Primer sistema de autorizaciones médicas personalizadas de IA generativa totalmente autónoma reduce el retraso en la atención
- Según un estudio, registros médicos electrónicos pueden ser clave para mejorar la atención al paciente
- IA entrenada para biomarcadores vocales específicos podría predecir con precisión enfermedad de arterias coronarias
- Inteligencia artificial detecta las fracturas en los rayos X con exactitud
Canales
Cuidados Criticos
ver canal
Nuevo dispositivo detecta ADN de tuberculosis directamente en el aire exhalado
La tuberculosis (TB) es una enfermedad transmitida por el aire que sigue siendo una de las infecciones más mortales del mundo, diagnosticada principalmente mediante análisis de esputo. Sin embargo, muchos... Más
Una nueva copa menstrual podría detectar infecciones y mejorar el diagnóstico
La salud menstrual es un tema crítico para millones de niñas y mujeres, especialmente en los países de ingresos bajos y medianos, donde el acceso a productos seguros y dignos sigue... MásTécnicas Quirúrgicas
ver canal
Implantes ortopédicos superiores combaten infecciones y aceleran la curación tras la cirugía
Las infecciones asociadas a implantes siguen siendo uno de los mayores desafíos en la cirugía ortopédica, lo que provoca fallos en los dispositivos, una recuperación prolongada y una mayor resistencia... Más
Técnica basada en láser elimina tumores pancreáticos mientras protege el tejido sano
El adenocarcinoma ductal pancreático (PDAC, por sus siglas en inglés) es la forma más común y letal de cáncer de páncreas, y ocupa el tercer lugar entre las principales... MásCuidados de Pacientes
ver canal
Dispositivo automático de lavado de vías intravenosas mejora la atención en infusiones
Más del 80% de los pacientes hospitalizados reciben terapia intravenosa (IV). Cada dosis de medicamento IV administrada en una bolsa de infusión de pequeño volumen (<250 mL) debe... Más
Herramienta de capacitación en realidad virtual combate la contaminación de equipos médicos portátiles
Las infecciones asociadas a la atención médica (IAAS) afectan a uno de cada 31 pacientes, causan casi 100.000 muertes al año y generan un costo de 28.4 mil millones de dólares... Más
Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital
En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más
Tecnología portátil de luz germicida, única en su tipo, desinfecta superficies clínicas de alto contacto en segundos
La reducción de las infecciones adquiridas en la atención sanitaria (IAAS) sigue siendo una cuestión apremiante dentro de los sistemas sanitarios mundiales. Sólo en Estados Unidos, 1,7 millones de pacientes... MásPruebas POC
ver canal
Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso
Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Sistema de hemostasia de sangre total POC de última generación reconoce necesidades específicas de servicios de emergencia y quirófanos
Las pruebas hemostáticas actuales proporcionan solo un subconjunto de la información necesaria, o tardan demasiado en ser útiles en situaciones críticas de hemorragia, lo que... Más
Laboratorio portátil permitirá identificación de infecciones bacterianas más rápida y económica en el punto de necesidad
La resistencia a los antimicrobianos (RAM) es la falta de respuesta de las bacterias a un determinado antibiótico debido a mutaciones o genes de resistencia que la especie ha adquirido.... MásNegocios
ver canal
Philips y Masimo se asocian para impulsar las tecnologías de monitorización de pacientes
Royal Philips (Ámsterdam, Países Bajos) y Masimo (Irvine, CA, EUA) han renovado su colaboración estratégica plurianual, combinando la experiencia de Philips en monitorización... Más