Desarrollan novedosos biosensores del capullo del gusano de seda
|
Por el equipo editorial de HospiMedica en español Actualizado el 10 Apr 2009 |
Se están usando capullos del gusano de seda para desarrollar nuevos biosensores que pueden ser insertados en los pacientes y usados como dispositivo de rastreo para monitorizar su progreso después de la cirugía, o rastrear enfermedades crónicas como la diabetes.
El Bioingeniero Fiorenzo Omenetto, Ph.D., de la Universidad Tufts (Medford, MA, EUA) está usando capullos hilados por los gusanos de seda Bombyx mori para fabricar biosensores blanco-específicos, usando moldes específicos para formar un extracto de solución proteica de seda en dispositivos ópticos que son modelados con características ópticas a nanoescala. Este detalle fino es importante en óptica, puesto que la luz interactúa mejor con característica en una escala no más grande que su propia longitud de onda—aproximadamente 400 a 700 nanómetros en el caso de la luz visible. Las proteínas incrustadas en el material óptico se unen de manera eficiente al blanco como el oxígeno o una proteína bacteriana; cuando lo hacen, la luz transmitida por el detector cambia de color. Una vez integradas en los dispositivos de seda, las proteínas permanecen activas por años.
Un dispositivo como esos es una tarjeta roja transparente impregnada con hemoglobina y modelada con varios elementos ópticos, incluyendo una reja de difracción que divide la luz blanca en sus colores componentes. La tarjeta actúa como un detector de oxígeno simple: la luz que pasa a través cambia la longitud de onda ligeramente, dependiendo de cuánto oxígeno se ha unido a la hemoglobina incrustada. Esos cambios no pueden ser vistos a simple vista, pero pueden ser detectados por un fotodiodo, un dispositivo que transforma la luz en una corriente eléctrica. Cuando una gota de sangre rica en oxígeno es colocada en el detector la hemoglobina atrae el oxígeno de este, y la longitud de onda de la luz, registrada por los cambios del fotodiodo, cambia. Los investigadores también hicieron estructuras de seda conteniendo una enzima de rábano picante volátil llamada peroxidasa, así como un biosensor de glucosa que puede incorporar hexokinasa, una enzima que se liga al azúcar.
Las rejillas con anticuerpos y enzimas incrustadas en ellas podrían detectar prácticamente cualquier molécula interesante médicamente, como un marcador tumoral. Otra aplicación de las fibras ópticas de seda puede ser transportar luz desde la superficie de la piel hasta sensores implantados y reflejarla, de modo que puede ser leída por un fotodetector. Los detectores pueden ser implantados durante cirugías como resecciones de tumor y luego usados para monitorizar los pacientes en busca de signos de infección o cáncer recurrente. El dispositivo eventualmente se disuelve sin peligro, junto con el resto de las estructuras de soporte. Los biosensores fueron descritos en un artículo publicado en la edición de Enero-Febrero de 2009 de MIT Technology Review.
La fibra natural más fuerte conocida, la seda es preferida por los ingenieros de tejido porque es resistente mecánicamente pero se degrada sin peligro dentro del cuerpo. Para fabricar los biosensores, los capullos son hervidos en una solución que contiene carbonato de sodio. Esto ayuda a disolver la sericina, una glicoproteína pegajosa que mantiene unido los capullos pero causa reacciones inmunes en los humanos. Después de que las fibras de seda se secan, son disueltas en una solución de bromuro de litio. Cuando la solución se enfría, es cargada en un cartucho de diálisis y fijada dentro del vaso de precipitado” de agua, lo cual saca la sal. Lo que queda es una solución clara, viscosa de la proteína purificada fibroína de seda. El "jarabe” de seda luego es removido con una jeringa y cargado en una hilera de tubos de ensayo, listo para usar en la fabricación de biosensores.
Enlace relacionado:
Tufts University
El Bioingeniero Fiorenzo Omenetto, Ph.D., de la Universidad Tufts (Medford, MA, EUA) está usando capullos hilados por los gusanos de seda Bombyx mori para fabricar biosensores blanco-específicos, usando moldes específicos para formar un extracto de solución proteica de seda en dispositivos ópticos que son modelados con características ópticas a nanoescala. Este detalle fino es importante en óptica, puesto que la luz interactúa mejor con característica en una escala no más grande que su propia longitud de onda—aproximadamente 400 a 700 nanómetros en el caso de la luz visible. Las proteínas incrustadas en el material óptico se unen de manera eficiente al blanco como el oxígeno o una proteína bacteriana; cuando lo hacen, la luz transmitida por el detector cambia de color. Una vez integradas en los dispositivos de seda, las proteínas permanecen activas por años.
Un dispositivo como esos es una tarjeta roja transparente impregnada con hemoglobina y modelada con varios elementos ópticos, incluyendo una reja de difracción que divide la luz blanca en sus colores componentes. La tarjeta actúa como un detector de oxígeno simple: la luz que pasa a través cambia la longitud de onda ligeramente, dependiendo de cuánto oxígeno se ha unido a la hemoglobina incrustada. Esos cambios no pueden ser vistos a simple vista, pero pueden ser detectados por un fotodiodo, un dispositivo que transforma la luz en una corriente eléctrica. Cuando una gota de sangre rica en oxígeno es colocada en el detector la hemoglobina atrae el oxígeno de este, y la longitud de onda de la luz, registrada por los cambios del fotodiodo, cambia. Los investigadores también hicieron estructuras de seda conteniendo una enzima de rábano picante volátil llamada peroxidasa, así como un biosensor de glucosa que puede incorporar hexokinasa, una enzima que se liga al azúcar.
Las rejillas con anticuerpos y enzimas incrustadas en ellas podrían detectar prácticamente cualquier molécula interesante médicamente, como un marcador tumoral. Otra aplicación de las fibras ópticas de seda puede ser transportar luz desde la superficie de la piel hasta sensores implantados y reflejarla, de modo que puede ser leída por un fotodetector. Los detectores pueden ser implantados durante cirugías como resecciones de tumor y luego usados para monitorizar los pacientes en busca de signos de infección o cáncer recurrente. El dispositivo eventualmente se disuelve sin peligro, junto con el resto de las estructuras de soporte. Los biosensores fueron descritos en un artículo publicado en la edición de Enero-Febrero de 2009 de MIT Technology Review.
La fibra natural más fuerte conocida, la seda es preferida por los ingenieros de tejido porque es resistente mecánicamente pero se degrada sin peligro dentro del cuerpo. Para fabricar los biosensores, los capullos son hervidos en una solución que contiene carbonato de sodio. Esto ayuda a disolver la sericina, una glicoproteína pegajosa que mantiene unido los capullos pero causa reacciones inmunes en los humanos. Después de que las fibras de seda se secan, son disueltas en una solución de bromuro de litio. Cuando la solución se enfría, es cargada en un cartucho de diálisis y fijada dentro del vaso de precipitado” de agua, lo cual saca la sal. Lo que queda es una solución clara, viscosa de la proteína purificada fibroína de seda. El "jarabe” de seda luego es removido con una jeringa y cargado en una hilera de tubos de ensayo, listo para usar en la fabricación de biosensores.
Enlace relacionado:
Tufts University
Últimas Cuidados Criticos noticias
- Sistema linfático robótico allana el camino para dispositivos portátiles y máquinas autoalimentadas
- Tecnología de IA basada en EEG diagnostica con precisión el Alzheimer y la demencia
- Técnica de ultrasonido focalizado trata con éxito el cáncer cerebral pediátrico
- Gotas nasales combaten los tumores cerebrales de manera no invasiva
- La IA ayuda a optimizar la selección de la terapia y la dosificación en el shock séptico
- 'Píldoras' de bacterias luminiscentes pueden detectar enfermedades intestinales
- Parche de polímero permeable a la piel administra insulina de forma no invasiva
- Tecnología de nanogel casi 100% eficaz en la destrucción de bacterias resistentes a los fármacos
- Sensor de ultrasonido portátil ofrece tratamiento no invasivo sin cirugía
- Sistema de ECG sin gel promete transformar el diagnóstico de la salud cardíaca
- Parche biodegradable repara tejido dañado tras un infarto
- Microrrobots guiados magnéticamente permiten la administración dirigida de fármacos

- Nanomateriales inteligentes detectan y tratan lesiones cerebrales traumáticas simultáneamente
- Transfusión de sangre más temprana podría reducir la insuficiencia cardíaca y arritmia después de la cirugía
- Camiseta 'inteligente' detecta crisis epilépticas en tiempo real
- Parche cutáneo mide la eficacia de las vacunas contra la gripe y la COVID-19 en 10 minutos
Canales
Técnicas Quirúrgicas
ver canalCirugía laparoscópica mejora los resultados en recién nacidos con enfermedad hepática grave
La atresia biliar es una enfermedad hepática poco frecuente pero potencialmente mortal en recién nacidos que bloquea el flujo de bilis y provoca daño hepático progresivo si... MásUna nueva técnica de endoscopia permite acceder a tumores pulmonares profundos
La detección temprana del cáncer de pulmón puede salvar vidas, pero diagnosticar pequeños tumores en las regiones profundas de los pulmones sigue siendo un gran desafío... MásCuidados de Pacientes
ver canal
Dispositivo automático de lavado de vías intravenosas mejora la atención en infusiones
Más del 80% de los pacientes hospitalizados reciben terapia intravenosa (IV). Cada dosis de medicamento IV administrada en una bolsa de infusión de pequeño volumen (<250 mL) debe... Más
Herramienta de capacitación en realidad virtual combate la contaminación de equipos médicos portátiles
Las infecciones asociadas a la atención médica (IAAS) afectan a uno de cada 31 pacientes, causan casi 100.000 muertes al año y generan un costo de 28.4 mil millones de dólares... Más
Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital
En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... MásTecnología portátil de luz germicida, única en su tipo, desinfecta superficies clínicas de alto contacto en segundos
La reducción de las infecciones adquiridas en la atención sanitaria (IAAS) sigue siendo una cuestión apremiante dentro de los sistemas sanitarios mundiales. Sólo en Estados Unidos, 1,7 millones de pacientes... MásTI
ver canal
Herramienta basada en HCE predice el fallo del injerto tras un trasplante de riñón
El trasplante de riñón ofrece a los pacientes con enfermedad renal terminal una mayor supervivencia y mejor calidad de vida que la diálisis. Sin embargo, el fallo del injerto sigue... Más
Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles
Es probable que el futuro de la medicina se centre en la personalización de la atención médica, comprendiendo exactamente lo que cada individuo necesita y proporcionando la combinación... MásPruebas POC
ver canal
Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso
Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Sistema de hemostasia de sangre total POC de última generación reconoce necesidades específicas de servicios de emergencia y quirófanos
Las pruebas hemostáticas actuales proporcionan solo un subconjunto de la información necesaria, o tardan demasiado en ser útiles en situaciones críticas de hemorragia, lo que... Más
Laboratorio portátil permitirá identificación de infecciones bacterianas más rápida y económica en el punto de necesidad
La resistencia a los antimicrobianos (RAM) es la falta de respuesta de las bacterias a un determinado antibiótico debido a mutaciones o genes de resistencia que la especie ha adquirido.... MásNegocios
ver canal
Philips y Masimo se asocian para impulsar las tecnologías de monitorización de pacientes
Royal Philips (Ámsterdam, Países Bajos) y Masimo (Irvine, CA, EUA) han renovado su colaboración estratégica plurianual, combinando la experiencia de Philips en monitorización... Más







