Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

HospiMedica

Deascargar La Aplicación Móvil
Noticias Recientes COVID-19 Cuidados Criticos Téc. Quirúrgica Cuidados de Pacientes TI Pruebas POC Negocios Focus

Nuevo biomaterial combinado con método microquirúrgico único acelera recuperación de tejidos blandos

Por el equipo editorial de HospiMedica en español
Actualizado el 04 Apr 2024

La recuperación y el nuevo crecimiento de los tejidos blandos dependen en gran medida de la formación de nuevos vasos sanguíneos para suministrar oxígeno y nutrientes. Sin embargo, este proceso, conocido como vascularización, puede ser lento y afectar la recuperación y el nuevo crecimiento después de lesiones o enfermedades graves como el cáncer. Los médicos suelen utilizar estructuras de hidrogel a granel (redes de polímeros reticulados) para ayudar a la formación de vasos sanguíneos durante la cirugía reconstructiva, pero estas estructuras tienen limitaciones. Pueden causar retrasos que provoquen complicaciones como seroma (acumulación de líquido después de la cirugía), infección y falla reconstructiva. Para acelerar la formación y el diseño de nuevos vasos sanguíneos, los investigadores han combinado un biomaterial novedoso con un método microquirúrgico utilizado en cirugía reconstructiva, lo que permite mejorar la recuperación de los tejidos blandos.

El equipo de investigación de Penn State (University Park, PA, EUA) demostró que su técnica podría acelerar la formación de redes guiadas de vasos sanguíneos mediante un experimento de prueba de concepto de siete días. Los investigadores habían diseñado previamente estructuras de hidrogel granular (GHS), que son biomateriales únicos hechos de partículas de gel o microgeles empaquetados. A diferencia de los hidrogeles a granel, que se utilizan comúnmente en cirugía como base para la revascularización de tejidos, las GHS permiten que los vasos sanguíneos vuelvan a crecer siguiendo un patrón establecido. Esto contrasta con los hidrogeles a granel, donde los vasos sanguíneos adoptan una apariencia aleatoria a medida que vuelven a crecer en los hidrogeles a granel. Según los investigadores, su enfoque podría permitir la reparación y regeneración de tejidos en todo el cuerpo.


Imagen: El nuevo biomaterial combinado con un método microquirúrgico único puede conducir a una recuperación mejorada y más rápida de los tejidos blandos (Fotografía cortesía de Penn State)
Imagen: El nuevo biomaterial combinado con un método microquirúrgico único puede conducir a una recuperación mejorada y más rápida de los tejidos blandos (Fotografía cortesía de Penn State)

Su método quirúrgico emplea micropunción, una técnica que implica la perforación de un vaso sanguíneo existente con una aguja fina. Esto ayuda a las células a migrar rápidamente al tejido circundante, promoviendo el crecimiento angiogénico: la extensión de nuevos vasos sanguíneos a partir de los existentes. La micropunción también minimiza los riesgos de coagulación sanguínea y hemorragia importante, comunes en la cirugía vascular convencional. Después de realizar la micropunción, se aplica GHS en el área de la herida, proporcionando un soporte para la formación de vasos sanguíneos. La arquitectura de vacío distintiva de las GHS proporciona los parámetros necesarios para guiar los vasos sanguíneos a medida que crecen. La eficacia de la técnica de microcirugía/GHS se probó en las extremidades traseras de ratas y reveló la formación de vasos sanguíneos alrededor de las GHS en siete días, sin ningún efecto adverso. Además, al utilizar GHS de diferentes tamaños de microgel, los investigadores pudieron controlar las distancias entre los capilares en el patrón vascular resultante.

"Nuestro enfoque puede abrir oportunidades para redefinir el panorama de la vascularización de los tejidos, con una amplia aplicabilidad en muchas partes del cuerpo humano y para diversas enfermedades, incluidas las relacionadas con las cardiovasculares", dijo el autor correspondiente Amir Sheikhi. "Creemos firmemente que esta novedosa plataforma de GHS y microcirugía para cirugía reconstructiva y medicina regenerativa ayudará a los pacientes a desarrollar nuevos vasos sanguíneos rápidamente".

Enlaces relacionados:
Penn State


Miembro Oro
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Miembro Oro
Analizador de gases en sangre POC
Stat Profile Prime Plus
Miembro Plata
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
X-Ray QA Meter
Piranha CT

Últimas Téc. Quirúrgica noticias

Nuevo sistema de catéter permite procedimientos transeptales más seguros y rentables

Tecnología de balón magnético optimiza resultados del procedimiento de colonoscopia

Sistema de cirugía robótica con capacidad basada en visión por computadora allana el camino para laparoscopia de próxima generación