Piel impresa en 3D cierra heridas para obtener resultados más naturales en cirugía reconstructiva
Actualizado el 27 Mar 2024
La cirugía reconstructiva para lesiones o enfermedades que afectan la cara o la cabeza suele ser imperfecta y suele provocar cicatrices o pérdida permanente del cabello. Ahora, investigadores que aprovecharon células grasas y estructuras de soporte a partir de tejido humano obtenido clínicamente para corregir con precisión lesiones en ratas han descubierto que el tejido graso es la clave para imprimir en 3D piel viva en capas y potencialmente folículos pilosos. El descubrimiento tiene un potencial significativo para la cirugía reconstructiva facial y los tratamientos para el crecimiento del cabello en humanos.
Los científicos de Penn State (University Park, PA, EUA) han sido pioneros en una técnica para imprimir intraoperatoriamente un sistema completo y vivo de múltiples capas de piel, incluida la capa más profunda, conocida como hipodermis. "Intraoperatoriamente" implica la capacidad de imprimir este tejido durante la cirugía, lo que sugiere un método más inmediato e integrado para reparar la piel dañada. En particular, mientras que la capa superior de piel visible, la epidermis, se forma naturalmente con el apoyo de la capa intermedia y no requiere impresión, la hipodermis es crucial ya que está compuesta de tejido conectivo y grasa, ofreciendo estructura y soporte esenciales sobre el cráneo.
La investigación comenzó con tejido adiposo o grasa humana procedente de pacientes sometidos a cirugía. A partir de ahí, el equipo extrajo la matriz extracelular (la intrincada red de moléculas y proteínas que proporcionan estructura al tejido) para formular un componente de su biotinta. Otro componente de la biotinta se creó utilizando células madre derivadas del tejido adiposo. Estas células poseen el potencial único de evolucionar hacia varios tipos de células, dado el entorno adecuado. La bioimpresora utilizada en su investigación tenía tres compartimentos: uno para la mezcla de matriz y fibrinógeno, uno para las células madre y una solución de coagulación que ayuda a unir los demás componentes al sitio de la lesión. Este sistema de tres compartimentos permitió la coimpresión precisa de la mezcla matriz-fibrinógeno.
El equipo imprimió directamente en el sitio de la lesión con el objetivo de formar la hipodermis que ayuda en la curación de heridas, la generación de folículos pilosos, el control de la temperatura y más. Crearon con éxito las capas de la hipodermis y la dermis, y la epidermis se formó naturalmente por sí sola en dos semanas. Además, los investigadores observaron la formación de crecimientos descendentes en la hipodermis, que señalan las etapas iniciales del desarrollo temprano de los folículos pilosos. Si bien las células grasas en sí mismas no componen directamente la estructura celular de los folículos pilosos, desempeñan un papel importante en la regulación y el mantenimiento folicular. Esta capacidad de cultivar con precisión el cabello en los sitios de lesión o enfermedad podría influir en gran medida en la naturalidad de los resultados de la cirugía reconstructiva.
“Con este trabajo, demostramos piel bioimpresa de espesor total con potencial para hacer crecer pelo en ratas. Esto es un paso más hacia la posibilidad de lograr una reconstrucción de la cabeza y el rostro en humanos con un aspecto más natural y estéticamente más agradable”, afirmó Ibrahim T. Ozbolat, profesor de ciencias de la ingeniería y mecánica, de ingeniería biomédica y de neurocirugía en Penn State, quien dirigió el estudio de colaboración internacional que llevó a cabo el trabajo. “Creemos que esto podría aplicarse en dermatología, trasplantes de cabello y cirugías plásticas y reconstructivas; podría obtenerse un resultado mucho más estético. Con la capacidad de bioimpresión totalmente automatizada y materiales compatibles a nivel clínico, esta tecnología puede tener un impacto significativo en la traducción clínica de la piel reconstruida con precisión”.
Enlaces relacionados:
Penn State
Últimas Téc. Quirúrgica noticias
- Interfaz neural novedosa ayuda a diagnosticar y tratar trastornos neurológicos con riesgos quirúrgicos mínimos
- Nuevo sistema de lentes para endoscopios proporciona visión sin precedentes del interior del cuerpo
- Sistema DAVI totalmente implantable e inalámbrico facilita la vida a los pacientes con insuficiencia cardíaca