Herramienta de aprendizaje automático da una alerta temprana de problemas cardíacos o coágulos sanguíneos en los pacientes con COVID-19
Por el equipo editorial de HospiMedica en español
Actualizado el 18 Jan 2021
Un equipo de ingenieros biomédicos y especialistas en cardiología desarrolló un algoritmo que advierte a los médicos varias horas antes de que los pacientes hospitalizados con COVID-19 experimenten un paro cardíaco o coágulos de sangre.Actualizado el 18 Jan 2021
El predictor COVID-HEART desarrollado utilizando datos de pacientes tratados para COVID-19 por científicos de la Universidad Johns Hopkins (JHU; Baltimore, MD, EUA), puede pronosticar un paro cardíaco en pacientes con COVID-19 con una mediana de tiempo de alerta temprana de 18 horas y predecir los coágulos de sangre con tres días de anticipación. El algoritmo de aprendizaje automático se creó con más de 100 puntos de datos clínicos, información demográfica y resultados de laboratorio obtenidos del registro JH-CROWN que Johns Hopkins estableció para recopilar los datos COVID de cada paciente en el sistema hospitalario. Los científicos también agregaron otras variables informadas por los médicos en Twitter y provenientes de otros artículos preimpresos.
El equipo no anticipó que los datos del electrocardiograma jugarían un papel crítico en la predicción de la coagulación sanguínea. Pero una vez que se agregaron, los datos de ECG se convirtieron en uno de los indicadores más exactos para la afección. El siguiente paso para los investigadores es desarrollar el mejor método para configurar la tecnología en los hospitales con el fin de ayudar con la atención de los pacientes con COVID-19.
“Es un sistema de alerta temprana para predecir en tiempo real estos dos resultados en pacientes hospitalizados con COVID-19”, dijo la autora principal, Natalia Trayanova, profesora Murray B. Sachs de Ingeniería Biomédica y una profesora de medicina. “El predictor que se actualiza continuamente puede ayudar a los hospitales a asignar los recursos y las intervenciones adecuadas para lograr los mejores resultados para los pacientes”.
“La herramienta de predicción COVID-HEART podría ayudar en la clasificación rápida de pacientes con COVID-19 en el entorno clínico, especialmente cuando los recursos son limitados”, dijo Allison Hays, profesora asociada de medicina en la Facultad de Medicina de la Universidad Johns Hopkins y la colaboradora clínica principal del proyecto. “Esto puede tener implicaciones para el tratamiento y un seguimiento más estrecho de los pacientes con Covid-19 para ayudar a prevenir estos malos resultados”.
Enlace relacionado:
Universidad Johns Hopkins