Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

HospiMedica

Deascargar La Aplicación Móvil
Noticias Recientes COVID-19 Cuidados Criticos Téc. Quirúrgica Cuidados de Pacientes TI Pruebas POC Negocios Focus

Radiómica por TC ayuda a clasificar los nódulos pulmonares pequeños

Por el equipo editorial de HospiMedica en español
Actualizado el 03 Feb 2021
Un algoritmo de aprendizaje automático (AA) puede ser muy exacto para clasificar los nódulos pulmonares muy pequeños que se encuentran en los programas de detección pulmonar por TC de dosis baja, según un estudio nuevo.

Investigadores del Centro de Investigación de Cáncer de la Columbia Británica (BCCRC; Vancouver, Canadá), entrenaron un algoritmo de AA de análisis discriminante lineal (LDA), utilizando datos del estudio Pancanadiense de Detección Temprana del Cáncer de Pulmón (PanCan) para caracterizar, analizar y clasificar nódulos pulmonares pequeños como malignos o benignos extrayendo aproximadamente 170 características radiómicas de textura y forma, siguiendo la segmentación de nódulos semiautomatizada en las imágenes. Luego compararon el desempeño del algoritmo con el de la calculadora de puntuación de riesgo de malignidad de próstata, pulmón, colorrectal y ovario (PLCO) m2012, en otro conjunto de datos.

Imagen: La radiómica por TC puede ayudar a clasificar la malignidad de los nódulos pulmonares (Fotografía cortesía de Getty Images)
Imagen: La radiómica por TC puede ayudar a clasificar la malignidad de los nódulos pulmonares (Fotografía cortesía de Getty Images)

La cohorte de estudio consistió en 139 nódulos malignos y 472 nódulos benignos que tenían aproximadamente el mismo tamaño. Los investigadores aplicaron restricciones de tamaño (basadas en los criterios de clasificación de Lung-RADS) para eliminar cualquier nódulo del conjunto de datos que ya se consideraría sospechoso, lo que incluiría cualquier nódulo con componentes sólidos de más de 8 mm de diámetro. Los resultados mostraron que el algoritmo de AA superó significativamente el modelo de predicción de riesgo (PLCO) m2012, especialmente cuando se agregaron datos demográficos al análisis radiómico. El estudio fue presentado en el Congreso Especial Virtual de la AACR sobre Inteligencia Artificial, Diagnóstico e Imagen, celebrado durante enero de 2021.

“Los mejores resultados se lograron en un subconjunto de pacientes menores de 64 años, mujeres, que no tenían enfisema, fumaban menos de 42 paquetes-año, no tenían antecedentes familiares de cáncer de pulmón y no eran fumadoras actuales”, dijo el autor principal y presentador del estudio, Rohan Abraham, PhD. “Combinado con el conocimiento y la experiencia de los médicos, esto tiene el potencial de permitir una intervención más temprana y reducir la necesidad de una TC de seguimiento”.

La clasificación actual de los nódulos pulmonares se basa en el tamaño del nódulo, un factor que es de uso limitado para los nódulos subcentimétricos, o en el tiempo de duplicación del volumen, una variable que requiere exámenes de TC de seguimiento. Como resultado, los nódulos pulmonares muy pequeños, con componentes sólidos de menos de 8 mm de diámetro (y, por lo tanto, por debajo del umbral de estratificación de riesgo Lung-RADS 4A), son muy difíciles de clasificar y, a menudo, se les da un plan de manejo de “esperar y ver”.

Enlace relacionado:
Centro de Investigación de Cáncer de la Columbia Británica


Miembro Oro
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
New
Mammo 3D Performance Kits
Mammo 3D Performance Kits
New
Carotid Artery Stent
Roadsaver

Últimas TI noticias

Modelo de aprendizaje automático mejora predicción del riesgo de mortalidad para pacientes de cirugía cardíaca

Colaboración estratégica para desarrollar e integrar IA generativa en el cuidado de la salud

Solución de quirófanos habilitada para IA ayuda a hospitales a maximizar la utilización y desbloquear la capacidad